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ABSTRACT

CONSTRAIN NEUTRON STAR PROPERTIES WITH S𝜋RIT EXPERIMENT

By

Chun Yuen Tsang

The study of nuclear matter is an interdisciplinary endeavor that is relevant to both astrophysics

and nuclear physics. Astrophysicists need to understand the properties of nuclear matter as some

astrophysical objects are made of nuclear material. Nuclear physicists also need to understand the

properties of nuclear matter as they are fundamental to the understanding of the existence of nuclei,

their composition and the dynamics of nuclear collisions.

Recent measurements of gravitational waves from binary neutron star mergers and precise

neutron star radii from X-ray data of pulsars open a new channel for physicists to study nuclear

matter. Such astronomical observations of neutron stars are sensitive to nuclear matter at high

density that is usually inaccessible on earth. One of the ways physicists are able to reach such high

density in laboratory is through heavy-ion collision. Transport model calculations that simulate

nuclear collisions show that head-on collisions of heavy nuclei at high beam energy compress the

overlapping region momentarily to densities comparable to that of the interior of neutron stars.

To study neutron star where number of neutrons far exceeds that of protons, the dependence

of nuclear properties on neutron-to-proton ratio (𝑁/𝑍) needs to be understood. This dependence

is quantified by the symmetry energy, which describes the difference in binding energy between

pure neutron matter and matter with equal amount of protons and neutrons. The latter is also

known as symmetric nuclear matter (SNM) which has been fairly well constrained. The amount of

internal neutron star pressure that supports itself from gravitational collapse depends on the value

of symmetry energy.

Most of the existing heavy-ion collision data comes from collisions of stable isotopes. This

limits the range of available 𝑁/𝑍 in nuclear experiments. Extending results to a wider range of 𝑁/𝑍
is one of the goals of S𝜋RIT experiment using projectiles provided by the cutting-edge Radioactive



Isotope Beam Factory in RIKEN, Japan. S𝜋RIT time projection chamber (TPC) is constructed

to measure charged pions spectra from the collision of neutron-rich system (132Sn + 124Sn),

neutron-poor system (108Sn + 112Sn) and intermediate system (112Sn + 124Sn) at 270 MeV/u.

By comparing fragmentation patterns for reactions with different number of neutrons, symmetry

energy effects can be isolated. Some results from the analysis of pion spectra have been published

and will be briefly reviewed in this work before we focus on light fragment observables that are also

available from the TPC data. The data analysis software, with highlights on correction of some

major detector aberrations, is discussed in details. Monte Carlo simulation of the S𝜋RIT TPC is

then performed to understand the behavior of S𝜋RIT data and validate our data analysis procedure.

Finally, Bayesian analysis is performed to compare transport model simulations with selected

light fragment measurements using Markov-Chain Monte Carlo and Gaussian emulators. The

observables are chosen to minimize systematic uncertainties from both the experiment and model.

The posterior provides a comprehensive constraint on the symmetry energy parameters. Although

previous analyses of pion spectra have already constrained the slope of symmetry energy at sat-

uration density (𝐿), its uncertainty can be reduced by 39% if pion results are combined with our

new Bayesian posterior. The implications of symmetry energy constraint for neutron star will be

discussed to demonstrate the importance of data from rare isotope heavy-ion collisions.
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CHAPTER 1

INTRODUCTION

1.1 Nuclear equation of state (EoS)

Unification is a general goal pursued by all physicists. Isaac Newton unified gravity on Earth

with the trajectories of celestial objects and James Maxwell unified electricity and magnetism

through the famous Maxwell’s equations. The beauty of unification is that it ties seemingly

unrelated phenomena together with a single description. In the study of nuclear equation of state

(EoS), we hope to unify astronomical observations, which is the study of massive celestial objects,

with heavy-ion collision measurements, which is the study of tiny invisible nucleus. The masses

of interest in these two fields differ by 55 orders of magnitude, and yet they are related in a unified

description of nuclear EoS.

The key is to realize that the environment in the interior of neutron star (NS) is similar to that

in the core of ordinary nucleus. The properties of ordinary matter we find in our everyday life

are dictated by the electromagnetic interactions between electrons and nucleus of atoms, but the

gravitational pull in neutron star is so strong that electromagnetic force is not strong enough to

support the material from collapsing. The extreme environment forces electrons and protons to

merge and form neutrons. Such a homogeneous matter of nucleons is called nuclear matter and is

supported by nuclear degeneracy pressure. This is similar to nucleus during a heavy-ion collision

where parts of it are being compressed to supersaturation density. Our knowledge on nuclear

collisions can be extrapolated to predict properties of NS.

Properties of nuclear matter are described quantitatively by nuclear EoS. It is an equation that

relates various state variables such as pressure, volume and internal energy. One of the simplest

yet powerful approximation to nuclear EoS is the semi-empirical mass formula (SEMF). It models
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nucleus as an incompressible drop of nuclear matter [9] and yields the following formula,

𝐸𝐵 = 𝑎𝑉 𝐴 − 𝑎𝑆𝐴
2/3 − 𝑎𝐶

𝑍2

𝐴1/3 − 𝑎𝐴
(𝑁 − 𝑍)2

𝐴
+ 𝛿(𝑁, 𝑍). (1.1)

Here 𝐸𝐵 is the binding energy, 𝑍 is the number of protons, 𝑁 is the number of neutrons and

𝐴 = 𝑁 + 𝑍 is the total number of nucleons inside a nucleus. The five terms in Eq. (1.1) can be

understood as follows: The first term with coefficient 𝑎𝑉 is called the volume term which accounts

for the increased interactions due to proportionally increased number of nucleons. The second term

with coefficient 𝑎𝑆 is called the surface term and is negative to account for the fact that nucleons

on the surface have less neighbors to interact with, so overall strength of interaction is reduced.

The third term with coefficient 𝑎𝐶 is called the Coulomb term which accounts for the Coulomb

repulsion between protons. This term resembles Coulomb potential once you realize that average

distance between nucleons ∝ 𝐴1/3 and charge of nucleus ∝ 𝑍 . The fourth term with coefficient 𝑎𝐴

is called the asymmetry term which arises from the asymmetry in number of protons and neutrons.

If the numbers of protons and neutrons are the same, they share the same Fermi energy. However

if there are more neutrons than protons, some neutrons are forced to occupy higher energy levels

due to Pauli exclusion principle. Although Fermi energy of protons is reduced, the overall internal

energy is raised which results in a reduction of binding energy. Pauli exclusion principle alone

does not fully explain the magnitude of asymmetry term due to the fact that neutrons and protons

do interact with each other and the assumption that they occupy independent energy levels is not

true, but it does give an intuitive understanding of the meaning of asymmetry term. The final term

is called the pairing term which originates from spin-coupling. For the purposes of this thesis, the

pairing term will not be discussed.

The SEMF was developed to approximately describe the mass and stability of atomic nuclei. Its

agreement with measured binding energies of various nuclei is satisfactory when best fitted values

of the coefficients are used [10]. Baryon density at the core of most ordinary nucleus is roughly

𝜌 ≈ 𝜌0 = 0.155 fm−3, where 𝜌0 is called the saturation density. The parameters in SEMF are fitted

with data from ordinary nucleus so the equation is only valid for nuclear matter at 𝜌 ≈ 𝜌0. If we
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naively approximate NS as one giant nucleus with 𝐴 → ∞, its EoS can be written as,

𝐸𝐵

𝐴
= 𝐸𝑖𝑠 + 𝐸𝑖𝑣𝛿

2, (1.2)

with 𝐸𝑖𝑠 = 𝑎𝑉 , 𝐸𝑖𝑣 = 𝑎𝐴 and 𝛿 = (𝑁 − 𝑍)/𝐴. The surface and Coulomb terms tend to zero as

we take limit to infinite atomic mass. These terms are relabelled to emphasize that the first term is

the isoscalar term which makes no distinction between protons and neutrons, and the second term

is the isovector term which accounts for the effects of having an unequal numbers of protons and

neutrons. Such approximated NS EoS is inaccurate because baryon density in ordinary nucleus

is different from that in NS. For instance, NS density at its center can be up to multiple times the

saturation density. Despite the shortcomings, it is still instructive to see how EoS decomposes into

isoscalar and isovector terms.

To overcome the over-simplifications in SEMF, we incorporate density dependence to equa-

tion (1.2),

𝐸 (𝜌, 𝛿) = 𝐸𝑖𝑠 (𝜌) + 𝛿2𝐸𝑖𝑣 (𝜌) +𝑂 (𝛿4). (1.3)

The isovector term is often denoted as 𝑆(𝜌) and is sometimes referred to as the symmetry energy

term. Measurements of collective flow and Kaon production in energetic nucleus-nucleus collisions

have constrained 𝐸𝑖𝑠 to densities up to 4.5𝜌0 [11–13]. Specifically, the symmetric matter constraints

on pressure vs. density were determined from the measurements of transverse and elliptical flow

from 197Au + 197Au collisions over a range of incident energies from 0.3 to 1.2 AGeV [11].

These constraints were confirmed in an independent analysis of elliptical flow data [14]. Similar

constraints from 1.2𝜌0 to 2.2𝜌0 were obtained from the Kaon measurements [12, 13]. These

heavy-ion constraints are consistent with the Bayesian analyses of the NS mass-radius correlation

when certain assumptions on the formulation of 𝐸𝑖𝑣 are made [15].

This is in stark contrast to constraints on 𝐸𝑖𝑣 as it has been constrained mainly at densities near

or below 𝜌0. Since NS composed mostly of neutrons, 𝐸𝑖𝑣 should play a prominent role. Indeed

studies found that NS properties are sensitive to 𝐸𝑖𝑣 at 2𝜌0 [16]. The purpose of this study is
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to constrain the 𝐸𝑖𝑣 at density above saturation using heavy-ion collisions. In a medium-energy

heavy-ion collision, the colliding part of the nucleus is compressed and reaches higher density than

𝜌0, and when it expands afterward the density falls below 𝜌0. Complete knowledge of nuclear EoS

across different densities is needed for nuclear theory to accurately predict collision observables.

Nuclear EoS can be parameterized in multiple ways. For example, Skyrme [3] and poly-

tropes [17] are two common formulations of EoS. Derivatives of EoS with at saturation density

are often used as empirical parameters to characterize the density and isospin dependence of the

EoS. Expanding at 𝜌0 also allow us to conveniently enforce the condition that symmetric matter

energy density must be a minimum at 𝜌0 by simply setting the first order derivative of 𝐸𝑖𝑠 to zero.

Symmetric matter energy has to be minimum at 𝜌0 for bound states of ordinary nucleus to exist.

These derivatives are commonly expressed as coefficients in the Taylor expansion when EoS is

expanded in terms of 𝑥 = (𝜌 − 𝜌0)/(3𝜌0):

𝐸𝑖𝑠 (𝜌) = 𝐸0 +
1
2
𝐾sat𝑥

2 + 1
3!

𝑄sat𝑥
3 + 1

4!
𝑍sat𝑥

4 + ..., (1.4)

and,

𝐸𝑖𝑣 (𝜌) =𝑆0 + 𝐿𝑥 + 1
2
𝐾sym𝑥2 + 1

3!
𝑄sym𝑥3 + 1

4!
𝑍sym𝑥4 + ... (1.5)

For some EoS families, energy depends on density and asymmetry in a way that cannot be separated

into the sum of two terms, but the isoscalar term is always well-defined:

𝐸𝑖𝑠 (𝜌) = 𝐸 (𝜌, 𝛿 = 0). (1.6)

The isovector term can be defined instead as the second term in the Taylor expansion of 𝐸 (𝜌, 𝛿) in

𝛿 around 𝛿 = 0 (not to be confused with previous EoS expansion coefficients which are expanded

in 𝑥),

𝐸𝑖𝑣 (𝜌) =
1
2
𝜕2𝐸 (𝜌, 𝛿)

𝜕𝛿2

���
𝛿=0

. (1.7)

𝑆, 𝐿, 𝐾 , 𝑄, 𝑍 and any higher order terms in Taylor expansion can always be extracted from any

nuclear EoS by taking derivatives. These coefficients are commonly used to compare EoSs from
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different families that have continuous derivatives. Families of EoSs with discontinuous higher

order derivatives, such as piece-wise Polytropes, cannot be expanded this way, but in this thesis we

will focus on smooth EoSs with comparable derivatives.

1.2 Neutron Star

Neutron Star (NS) matter is one of the densest material besides black hole in the universe. This

matter is so dense that it becomes energetically favorable for protons and electrons to combine and

form neutrons. At densities ranging from somewhat below saturation density (𝜌0 = 0.155 fm−3 )

to 3𝜌0, it is reasonable to describe NS matter as locally uniform nuclear matter composed mostly

of neutrons. Study of NS is of great relevance to nuclear physics because it provides unique

information on the properties of asymmetric nuclear matter at high density. Refs. [18–20] provide

more in depth discussions on this subject.

Astrophysical NS properties, when combined with constraints from heavy-ion collisions, have

provided a rough understanding of nuclear EoS. Typical temperatures of NSs are low with 𝑘𝐵𝑇 <

1 MeV, thus finite temperature effect is small, but the uncertainty in the relation between the

pressure and energy density of nuclear matter at various baryon densities remains large [21].

Recent gravitational wave observations from the LIGO collaboration [22] has opened a new

window for understanding neutron-star matter. Specifically, the LIGO observation provides estima-

tion for tidal deformability, also known as tidal polarizability, a quantity that bears direct relevance

to nuclear EoS. When two NSs orbit around each other, both stars are deformed by tidal force. The

mass quadrupole that develops in response to the external quadrupole gravitational field emerges

as:

𝑄𝑖 𝑗 = −𝜆𝐸𝑖 𝑗 . (1.8)

Here 𝐸𝑖 𝑗 is the external gravitational field strength and 𝜆 is the tidal deformability. The orbital

period of the inspiral differs from point mass calculation because tidal deformation contributes to an

overall orbital energy loss and changes the rotational phases. This difference is used to extract the

dimensionless tidal deformability (Λ) of a NS [23, 24]. Throughout this thesis, tidal deformability
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Figure 1.1: Cartoon illustration of impact parameter b, and spectator and participant nucleons.
Taken from Ref. [2].

always refers to the dimensionless tidal deformability Λ defined as,

Λ =
𝜆𝑐10

𝐺4𝑀5 =
2
3
𝑘2

( 𝑐2𝑅
𝐺𝑀

)5
, (1.9)

where 𝑘2 is the second Love number [25, 26]. This whole expression, including the Love number,

is sensitive to the nuclear EoS [22, 27, 28]. Steps needed to calculate Λ from a given EoS are

detailed in Appendix B. With the gravitational wave observation of the neutron star merger event

GW170817, LIGO group first constrained this parameter to Λ < 800 [22], and later refined to

Λ = 190+390
−120 with additional assumption on the functional form of EoS [29]. The quantitative

relation between Λ and EoS parameters will be explored in this thesis.

1.3 Heavy-ion collision

Another source of constraints on density dependence of the symmetry energy comes from heavy-

ion collision (HIC). When two nuclei collide, part of the target and projectile nucleus overlap with

each other. The collision pushes the density of the overlapping region to well above 𝜌0 [2]. The

nucleons in the overlapping region is commonly referred to as the participant nucleons whereas

those not directly in the path of collision are referred to as spectator nucleons. The two types of

nucleons are illustrated in Fig. 1.1. The emissions pattern of light fragments will shed light into

the shape of nuclear EoS.
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Before the advancement of Rare-Isotope (RI) beams, only stable nuclei can be studied which

limits the range of neutron-to-proton ratio in a reaction. With the development of modern RI beam

facilities, it is now possible to collide unstable neutron-rich or neutron-poor nuclei. By comparing

results from reactions at various neutrons-to-protons ratios, the asymmetry term contribution to

EoS can be studied.

The perpendicular distance between target and projectile is called the impact parameter, often

denoted as 𝑏. Events with small 𝑏 are called central events while those with large 𝑏 are called

peripheral events. Collision dynamics changes with impact parameter so different observables are

used for central and peripheral events to study nuclear EoS [11, 30–32].

Nuclear EoS has been studied with heavy-ion collision experiments where heavy-ions are

accelerated by particle accelerator(s) and guided by magnets to collide with target nucleus. Particle

detector(s) records the collision fragment distributions, from which observables are constructed

and compared to transport models. The properties of nucleus and constraints on nuclear EoS are

then inferred.

Most of the previous analyses of heavy-ion collisions explored a few transport model input

parameters at a time. For instance, Ref. [11] vary only the curvature parameter 𝐾sat while keeping

other parameters, such as in-medium cross-section and effective mass fixed. Different experiments

have led to different one-variable constraints or two-variable correlation constraints. Ref. [33] only

varies two variables, with other parameters such as in-medium cross-section or 𝐾sym restricted to

best fitted values from other experiments. Due to the complexity of nuclear dynamics, observables

rarely depend on only one or two parameters. If certain parameters are fixed, the potential

constraining power of the observable on those parameters are lost. Improvements can be made by

constraining multiple parameters with multiple observables simultaneously in a high dimensional

search.

Recently, pion observables on central events (will be described in details in Chapter 4.5)

have been compared to a transport model to successfully constrain symmetry energy term at high

density [33]. In this thesis, we will tighten the constraints from pion analysis by incorporating light
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fragment observables in a high dimensional parameter space search.

1.4 Organization of Dissertation

To probe the density dependence of symmetry energy term, a set of Sn + Sn heavy-ion experi-

ments were preformed in 2016 at RIKEN with a time projection chamber (TPC) called S𝜋RIT TPC.

It was placed inside the SAMURAI magnet which provided a near uniform magnetic field to dis-

tinguish charged particles including 𝜋+ from 𝜋− and measure the momentum of emitted fragments.

S𝜋RIT TPC provides a large geometrical coverage, but the analysis of TPC data is complicated

as will be shown in Chapter 3.2. In this thesis I will demonstrate some of the improvements on

data analysis and Monte Carlo simulation for light fragments observables, develop an efficient

algorithm to search for best fits in multi-dimensional parameter space and perform correlation anal-

ysis between EoS parameters, neutron star radius 𝑅 and deformability Λ. This correlation is the

connection between nuclear physics, represented by EoS parameters, and astrophysics, represented

by Λ and 𝑅 from LIGO and NICER experiment, respectively.

The organization of the dissertation is as follows: In Chapter 2, the correlation between nuclear

EoS and neutron star properties is studied. Then a brief introduction to the set up of S𝜋RIT

experiment and data analysis software are presented in Chapter 3. The results from the experiment

are then shown in Chapter 4. Monte Carlo simulation of the S𝜋RIT TPC is discussed in details

in Chapter 5 to verify the accuracy of our analysis software. Bayesian analysis is then performed

in Chapter 6 to translate experimental results into constraints on nuclear EoS parameters. Its

implications on NS properties will be discussed. Finally a brief summary is given in Chapter 7.
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CHAPTER 2

NEUTRON STAR CALCULATIONS

In this chapter, we will explore the correlation between tidal deformability and Taylor expansion

parameters. Previous studies have explored the constraints on different 2D parameter planes [34],

on a diverse set of models [35–37], and with Bayesian analysis on EoSs from chiral effective field

theory [38]. In this chapter, we will revisit the analysis with EoSs that are commonly used in

heavy-ion collision (HIC) and then explore a larger parameter space by employing a less restrictive

form of EoS.

A family of theoretical EoS is needed to correlate the Taylor expansion parameters with the

predicted tidal deformability (Λ). One widely used family in astrophysics is the piece-wise poly-

tropes [17], an EoS stitched together with multiple functions of the form 𝑃(𝜌) = 𝐾𝜌Γ at different

density ranges. In this equation, 𝑃 is the pressure, 𝜌 is the baryon number density and 𝐾 and Γ

are parameters that user vary. It is not suitable in this study because a Taylor expansion assumes

that the EoS is analytic over the range of interest. As long as there is only one polytrope, a Taylor

expansion is valid, but its validity does not extend past the point of connection between the original

polytrope and the next.

A commonly used family of EoS used in nuclear physics is the Skyrme interactions [3]. It

derives from simplified approximate nuclear interaction and relies on 15 free parameters in its

expanded form. The mathematical formulation of Skyrme type EoS is shown in Appendix A.

Many different Skyrme interactions have been developed to calculate nuclear properties and these

EoSs are well documented in the literature [3, 39, 40]. Skyrme EoSs have been applied to

derive ground state properties of finite nuclei and to nuclear matter under mean-field Hartree-

Fock approximation [41, 42]. We will review how the new merger observable, such as the tidal

deformability, correlates with parameters in nuclear EoS. The insights from this endeavor can be

used to guide the nuclear physics experiments designed to constrain the symmetry energy term of

the nuclear EoS.
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Recently, Meta-modeling EoS [1] is proposed as an alternative EoS. Its functional form is less

restrictive and would be suitable for understanding the effect from higher order terms. Due to its

unique advantage, we use them to study the correlations between high order Taylor parameters and

NS properties.

2.1 Structure of a NS and modifications on the nuclear EoS

Neutron stars are more than a “giant nucleus”. There are structural changes at various density

regions as a result of a competition between the nuclear attraction, chemical potential of various

particle species and the Coulomb repulsion. The dynamics of the outermost layer of NSs is

described mostly by the Coulomb repulsion and nuclear masses, where nuclei arrange themselves

in a crystalline lattice. As the density increases, it becomes energetically favorable for the electrons

to capture protons, and the nuclear system evolves into a Coulomb lattice of progressively more

exotic, neutron-rich nuclei that are embedded in a uniform electron gas. This outer crustal region

exists as a solid layer of about 1 km in thickness [28].

At intermediate densities of sub-saturation, the spherical nuclei that form the crystalline lattice

start to deform to reduce the Coulomb repulsion. As a result, the system exhibits rich and complex

structures that emerge from a dynamical competition between the short-range nuclear attraction

and the long-range Coulomb repulsion [43].

At densities of about half of the nuclear saturation density, the uniformity in the system is

restored and matter behaves as a uniform Fermi liquid of nucleons and leptons. The transition

region from the highly ordered crystal to the uniform liquid core is very complex and not well

understood. At these regions of the inner crust which extend about 100 meters, various topological

structures are thought to emerge that are collectively referred to as “nuclear pasta”. Despite the

undeniable progress [44–57] in understanding the nuclear-pasta phase since their initial prediction

over several decades ago [58–60], there is no known theoretical framework that simultaneously

incorporates both quantum-mechanical effects and dynamical correlations beyond the mean-field

level. As a result, a reliable EoS for the inner crust is still missing.
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The matter in the core region of NS can be described as uniform nuclear matter where neutron,

protons, electrons and muons exist in beta equilibrium [43]. Although a phase change and exotic

matter such as hyperons [43, 61, 62] could appear in the inner core region, there is currently no

direct evidence of their existence. In this work, we calculate the EoS in this region by assuming

that the neutron-star matter is composed of nucleons and leptons only.

Due to the rich structure of NSs, the nuclear EoS needs to be contextualized before it can be used

for NS properties calculation. To begin with, crustal EoS should be used at density below transition

density 𝜌𝑇 . Normally the determination of 𝜌𝑇 requires complicated thermodynamic calculations,

but some simple relationship has been found between transition densities and Taylor parameters of

the EoS [63] that greatly simplifies its calculation. In this study, the following equation is used to

determine 𝜌𝑇 :

𝜌𝑇 = −(3.75 × 10−4 fm−3MeV−1)𝐿 + 0.0963 fm−3. (2.1)

Outer and inner crust exhibit different physical properties and should be described by different

EoSs. For the outer crust, EoS provided by Ref. [64] is used in this analysis. For the inner crust,

either a Fermi-gas EoS (used in Section 2.2) or spline interpolation (used in Section 2.3) is used.

Its main purpose is to connect the outer crust and outer core. The outer crust is used in the region

of 0 < 𝜌 < 0.3𝜌𝑇 and the inner crust in 0.3𝜌𝑇 ≤ 𝜌 < 𝜌𝑇 . The transition density at 0.3𝜌𝑇 is chosen

ad-hoc and this connection region cannot precisely describe crustal dynamics, but properties of the

neutron star core such as tidal deformability does not appear to be sensitive to the choice of the

crustal EoS [28, 65, 66].

The outer core region 𝜌 > 𝜌𝑇 is characterized by the EoS of a beta equilibrated system of

protons, neutrons, electrons and muons. Proton and neutrons are collectively described by nuclear

EoS while electrons and muons are modeled as relativistic Fermi gases. Equilibrium is attained

by minimizing the Helmholtz free energy at different densities. Beyond a certain high density

threshold 𝜌𝑐, the EoS of outer core may not be applicable. To complete the description of NS

EoS, polytropes (used in Section 2.2) or EoS with speed of sound equals to speed of light (used

in Section 2.3) can be used to extend the EoS to the central density region of a neutron star. The
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high density region mainly affects the maximum neutron star mass and does not affect the relevant

properties of the 1.4 solar mass neutron stars considered here.

To summarize, EoS of the neutron-star matter is formulated as follows:

𝑃(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃outer crust(E), if 0 < 𝜌 < 0.3𝜌𝑇

𝑃connection(E), if 0.3𝜌𝑇 < 𝜌 < 𝜌𝑇

𝑃outer core(E), if 𝜌𝑇 < 𝜌 < 𝜌𝑐

𝑃inner core(E) if 𝜌𝑐 < 𝜌.

(2.2)

In the above equation, E is the energy density, 𝑃outer crust is the pressure from outer crustal EoS

and 𝑃outer core is the pressure from beta-equilibrated nuclear EoS. 𝑃connection is the intermediate

equation that connects 𝑃crust(Ecrust(0.3𝜌𝑇 )) to 𝑃outer core(Eouter core(𝜌𝑇 )).

2.2 Neutron stars from Skyrme EoS

This section is a slightly modified version of Ref. [16], licensed under a Creative Commons

Attribution (CC BY) license.

In this section, a collection of 248 Skyrme interactions from Refs. [3, 40, 67] are used to form

the outer core EoS. The outer core is assumed to be valid until 𝜌𝑐 = 3𝜌0, where a transition to

inner core occurs. A polytropic EoS of the form 𝐾′𝜌𝛾 is used to extend the EoS to the central

density region of a neutron star. The constants 𝐾′ and 𝜌0 are fixed by the conditions that the

pressure at thrice the normal nuclear density, 𝑃inner core(𝜌𝑐) matches the pressure from the Skyrme

density functionals 𝑃outer coure(𝜌𝑐) and that the polytrope pressure at 7𝜌0 is such that the EoS can

support a 2.17 solar-mass neutron star, the maximum neutron star mass predicted from the neutron

star merger event [68]. The EoS in different density regions are presented by the different color

curves in Fig. 2.1. At the lowest densities, the EoSs describing the outer crust, are represented by

yellow lines. The Fermi-gas EoS that connect the crust to the inner core are represented by the

green curves. As a vehicle in connecting nontrivial nuclear physics observables to 1.4 solar mass

neutron-star observables, we use the Skyrme interactions (green curves) [3, 39, 40] at densities
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Figure 2.1: Composition of EoSs in different density regions in the neutron star. The outer crust
EoS is represented by the yellow line, relativistic Fermi gas polytropic EoSs by the green lines,
Skyrme EoSs by the blue lines and high density polytropes by the red lines. See text for details.

found in the outer core region (between 0.5𝜌0 to 3𝜌0) that represent the nuclear matter environment

where such interactions can apply. The polytropic EoS above 3𝜌0 are plotted in red. The Skyrme

interactions that generate negative pressure at 3𝜌0 or otherwise would not support a 2.17 solar mass

neutron star are excluded as they are not realistic.

2.2.1 Results for a 1.4-solar mass NS

From the collection of Skyrme EoSs, only 182 of them can support a 2.17 solar mass neutron

star. Each EoS, represented by an open circle in Fig. 2.2, gives rise to a unique prediction for the

neutron-star radius and tidal deformability. The trend exhibited by the open circles reflects the

fact that tidal deformability and neutron-star radius are correlated as described by Eq. (1.9). Tidal

deformability is sensitive to pressure at density region of 0.5 − 3𝜌0 [17, 38, 69]. If we neglect

the crust in our calculations, we arrive at the blue dashed curve. Above Λ > 600, calculations

including a crust produce larger radii. The phenomenon that the crust adds to the radii has also

been observed in other calculations [68, 69].
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Figure 2.2: Correlation between neutron-star tidal deformability and radius from current calcu-
lations are represented by open circles and those from Ref. [3] by open squares. The light blue
shaded area represents constraint from recent GW170817 analysis [4]. Five interactions, KDE0v1,
LNS, NRAPR, SKRA, QMC700, deemed as the best in Ref. [3] in describing the properties of
symmetric matter and calculated pure neutron matter, are plotted as red stars. The dashed curve is
the best fit to our results if no crust is included in our neutron star model.

The increase in crustal thickness with neutron star radius is consistent with Ref. [70], which

shows that the crust thickness increases inversely with neutron star compactness (𝑀/𝑅). The

reason is that crust thickness contributes to the total radius but does not affect the total mass

and depends little on uncertainties in the crustal EoS. In the region of large tidal deformability,

our results are consistent with those from EoSs based on relativistic mean-field interactions [4]

following analogous methodology and represented by the open red squares in Fig. 2.2. The range

of the values Λ = 70 − 580 and 𝑅 = 10.5 − 13.3 km obtained from the GW170817 analysis [29] is

represented by the light blue-shaded square. Our calculations lie nearly diagonally across the box

with about 130 interactions inside.

One advantage of Skyrme nuclear density functionals is that many different Skyrme interactions

have been developed to calculate nuclear properties and these studies are well documented in the

literature [3, 39, 40]. As described in Ref. [3], eleven constraints that represent the properties of

14



symmetric nuclear matter and pure neutron matter are used to assess 240 Skyrme interactions.

Five interactions, KDE0v1, LNS, NRAPR, SKRA, QMC700, which satisfy nearly all the eleven

constraints, are highlighted as red stars in all the figures in this section. The Λ values (∼ 250) they

yield, with the associated radii (∼ 11.3 km), are well within the GW constraint.

As mentioned in Section 1.1, it is customary to expand EoS in Taylor parameters expanded

at saturation density. By taking advantage of the large range of Skyrme parameters used in this

work, we can explore the correlations of the set (𝐾sat, 𝑄sat, 𝑆0, 𝐿, 𝐾sym, 𝑄sym) to the neutron star

properties, specifically, the tidal polarizability, Λ. Since Λ is monotonically related to the neutron

star radius 𝑅, we observe similar correlation between 𝑅 and the set (𝐾sat, 𝑄sat, 𝑆0, 𝐿, 𝐾sym, 𝑄sym)

even though the latter correlations are not discussed below.

First we explore the connection to the parameters in 𝐸𝑖𝑠. Fig. 2.3 shows the plots of Λ vs 𝐾sat

(left panel) and 𝑄sat (right panel). The value of 𝐾sat, also known as compressibility, has been

fairly well determined experimentally to be 230 ± 30 MeV [3]. Most of the Skyrme interactions

studied here cluster around 𝐾sat ∼ 240 MeV and, within this tight bound on 𝐾sat, show no obvious

correlation with Λ. 𝑄sat values cluster around ∼ −380 MeV and again show no correlation with Λ.

This observation that Λ is not strongly connected to 𝐾sat and 𝑄sat that characterize the symmetric

matter, is consistent with conclusions of previous studies [71]. This implies that it would be difficult

to extract properties of the symmetric nuclear matter from the dipole deformability of the neutron

star alone.

Next we explore the importance of the parameters in symmetry energy term, 𝑆0, 𝐿, 𝐾sym, and

𝑄sym in Fig. 2.4. The abscissa scales are chosen to represent the respective ranges of values found in

Ref. [3] and that the correlations between the plots are comparable. The correlations betweenΛ and

symmetry energy parameters are stronger than those for symmetric nuclear matter. The correlation

is strongest in 𝐾sym followed by 𝐿. Here 𝐿 mainly characterizes the vicinity of saturation density

region as it is the first derivative. Since the second-order term, 𝐾sym impacts more at the higher

densities, it is not surprising that 𝐾sym should have stronger influence on Λ. The much weaker

sensitivity to 𝑄sym probably reflects that it impacts density above 3𝜌0. Different models may have
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Figure 2.3: Correlation between the neutron star deformabilityΛ and the compressibility parameter
𝐾sat (left panel) and skewness parameter 𝑄sat (right panel) defined in Eq. (1.4) for the symmetric
matter EoS of Skyrme functionals used in the study. The red stars in both panels represent the five
interactions, KDE0v1, LNS, NRAPR, SKRA, and QMC700 that satisfy nearly all 11 constraints
of Ref. [3].

different correlations between 𝑆0, 𝐿, 𝐾sym, and 𝑄sym. Thus the correlations observed here may not

be universal. It would be interesting to examine these correlations with other density functionals

and, in particular, with interactions that have different correlations between density regions than

those that are implicitly contained in the Skyrme.

2.2.2 Neutron star of different masses

Fig. 2.2 shows the power-law relationship between the tidal deformability and the radius for 1.4

solar mass neutron star. If mass of the neutron star changes, a different power law relationship

is expected. The left panel of Fig. 2.5 shows the tidal deformability as a function of neutron star

radius for neutron-star of mass 1 (closed violet circles), 1.2 (open violet circles), 1.4 (closed blue

squares), 1.6 (open blue squares), 1.8 (closed red triangles) and 2 (open triangle) solar masses. A

universal relationship with the tidal deformability is obtained if the mass is taken into account as

shown in the right plot of Fig. 2.5 where the radius is replaced by the compactness factor (𝑀/𝑅).

As expected, the tidal deformability has an inverse power law relationship to the compactness factor
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Figure 2.4: The four panels show the correlation between the neutron star deformability Λ and
Taylor expansion coefficients 𝑆0 (lower left), 𝐿 (upper left), 𝐾sym (upper right) and 𝑄sym defined
in Eq. (1.5) for the symmetry energy and obtained for the Skyrme functionals used in the study.
The symbols follow the same convention as in Figs. 2.2 and 2.3.

(𝑀/𝑅). For a fixed solar mass, the range of the compactness factor is limited since the radius of

the neutron star mostly span a range from about 8 to 14 km. Thus it is easier to deform a smaller

star giving rise to larger deformability than to deform a star with larger mass.

2.3 Neutron stars from Meta-modeling EoS

This section is a slightly modified version of Ref. [72] and reproduced here with the permission

of the copyright holder.

While Skyrme EoS provides numerous advantages, it is difficult to explore new physics from

the Taylor expansion parameters because they are strongly constrained by the form of the Skyrme

interaction itself. It is difficult to access the functional dependencies of the Taylor expansion
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Figure 2.5: Left panel: Correlation between neutron-star tidal deformability and radius for neutron
stars with different masses. From top: closed and open circles, closed and open squares, closed
and open triangles represent neutron star of mass 1, 1.2, 1.4, 1.6, 1.8 and 2 solar masses. Right
panel: Universal relationship between neutron-star tidal deformability and compactness (𝑀/𝑅) for
neutron stars with different masses as plotted in the left panel.

parameters that are not contained in the original choice for the Skyrme functional form [73, 74].

This can be overcome with Meta-modeling EoS from Ref. [1]. Such metamodels for the EoS can be

easily constructed with only Taylor expansion parameters and effective masses. Their derivatives

of different orders are independent of each other by construction.

Four different empirical local density functionals (ELF) meta-models are proposed in Ref. [1]:

ELFa, ELFb, ELFc and ELFd. ELFa does not produce vanishing energy as density approaches

zero. ELFb does not converge to a typical Skyrme EoS even when identical Taylor parameters are

used. ELFc does not have the shortcomings of ELFa and ELFb and closely resembles Skyrmes

with similar Taylor parameters. Although ELFd agrees with Skyrmes better than ELFc, it relies on

high density information that is not well constrained by experiments.

From the above considerations, we adopt ELFc in this study. Similar choice is also made in

other recent studies [69, 75]. The formulation of ELFc is detailed in Appendix C. The following

choices of parameters have been accurately constrained by nuclear experiment and are fixed in the

18



analysis [1]: 𝐸sat = −15.8 MeV, 𝜌0 = 0.155 fm−3.

Apart from the usual Taylor series coefficients, another important quantity that characterizes

nuclear matter properties in Meta-modeling is the effective mass 𝑚∗(𝜌, 𝛿). It is used to characterize

the momentum dependence of nuclear interaction and it can be different for protons 𝑚∗
p(𝜌, 𝛿) and

neutrons 𝑚∗
n(𝜌, 𝛿) depending on the environment under which the nuclear matter is subjected to.

It is generally assumed that 𝑚∗
p = 𝑚∗

n in SNM.

Comparison of effective masses is commonly carried out through the comparison of two

quantities: the nuclear effective mass in SNM at saturation 𝑚∗
sat and the splitting in neutron and

proton effective masses in pure neutron matter (PNM) at saturation Δ𝑚∗ = 𝑚∗
n − 𝑚∗

p. The choice

of the two quantities mirrors the spirit of splitting EoS into isoscalar term and isovector term in

Eq. (1.3) where contribution from SNM is separated from the correction factor that arises from

asymmetry in numbers of protons and neutrons.

Sometimes it is more convenient to express 𝑚∗
sat and Δ𝑚∗ in terms of 𝜅sat, 𝜅𝑠𝑦𝑚 and 𝜅𝑣:

𝜅sat =
𝑚

𝑚∗
sat

− 1 = 𝜅𝑠,

𝜅sym =
1
2

( 𝑚

𝑚∗
𝑛
− 𝑚

𝑚∗
𝑝

)
,

𝜅𝑣 = 𝜅sat − 𝜅sym.

(2.3)

The parameter 𝜅𝑣 plays the role of the enhancement factor in Thomas-Reiche-Khun sum rule

and depends on the energy region of the resonance energy [76]. In this analysis, the effective

masses will be expressed in terms of 𝑚∗
sat/𝑚 and 𝜅𝑣 .

NS EoSs are constructed from Meta-modeling EoS using procedure detailed in Section 2.1,

with spline interpolation as the connection EoS in inner crust and beta-equalibrated ELFc as the

EoS for outer core. The inner core is represented by the "stiffest" possible EoS where speed of

sound is equal to the speed of light. The determination of transition density from outer to inner

core will be outlined below.

Additional characteristics of nuclear matter can be inferred using thermodynamic equations

once an EoS is specified. The pressure at various densities 𝑃(𝜌) is related to the derivative of the
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energy:

𝑃(𝜌) = 𝜌2 𝜕𝐸 (𝜌, 𝛿)
𝜕𝜌

. (2.4)

The adiabatic speed of sound can then be calculated [77]:(𝑐𝑠
𝑐

)2
=

( 𝜕𝑃
𝜕E

)
𝑆
, (2.5)

where E = 𝜌(𝐸 + 𝑚𝑐2) is the energy density of the material, including mass density. This implies

any thermodynamic stable EoS must satisfy
(
𝜕𝑃
𝜕E

)
𝑆
> 0. Furthermore, since information cannot

travel faster than the speed of light due to causality, the inequality 𝑐𝑠 < 𝑐 must hold for all densities

relevant to NS. This may not be always true for ELFc. To keep the EoS valid, we will switch from

ELFc to an expression for the stiffest possible EoS whenever causality is violated. In terms of

Eq.(2.2), 𝜌𝑐 is now the density at which speed of sound from Meta-modeling EoS is equal to speed

of light and 𝑃inner core is the stiffest EoS. The stiffest EoS is expressed as,

𝑃inner core(E, 𝑐𝑠, E0, 𝑃0) =
(𝑐𝑠
𝑐

)2(E − E0) + 𝑃0. (2.6)

This equation represents a EoS with constant speed of sound 𝑐𝑠, with 𝑐𝑠 = 𝑐 yields the stiffest

possible EoS [78]. E0 and 𝑃0 are reference values of energy density and pressure, respectively.

The reference values can be adjusted to match the conditions at a specific density where energy

density and pressure are known. The switch in EoS avoids superfluous rejection when causality is

considered.

2.3.1 Bayesian inference

We use Bayesian inference to study the influence of tidal deformability constraints from LIGO

on nuclear-matter EoS parameters. These parameters are sampled uniformly within reason-

able ranges and are then used to construct neutron-star matter EoSs. Through solving Tol-

man–Oppenheimer–Volkoff (TOV) equation (see Appendix B), we are able to calculate the corre-

sponding tidal deformabilities. By combining their prior distribution, which is our initial believe
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on parameter values based on findings from literature, and likelihood, which indicates the compat-

ibility between the calculated and the observed tidal deformability, Bayesian inference will assign

probability of each EoS parameter set being the correct values with Bayes theorem:

𝑃(M) = 1
𝑉tot

𝑤(M)𝑝(Λ(M))
∏
𝑖

𝑔𝑖 (𝑚𝑖). (2.7)

In this equation, M is the set of all EoS parameters, 𝑚𝑖 ∈ M is the 𝑖th EoS parameters, 𝑉tot is the

normalization constant, 𝑝(Λ(M)) is the likelihood of a EoS when its predicted Λ is compared to

LIGO observation, 𝑔𝑖 is the prior distribution of the 𝑖𝑡ℎ parameter and 𝑤(M) is the filter conditions

that filters out nonphysical EoSs.

The likelihood of EoS is the probability of having the observed LIGO event with the assumption

that the given theoretical EoS is the ultimate true EoS. We will model the likelihood function as an

asymmetric Gaussian distribution based on the extracted Λ = 190+390
−120 [29] for 1.4-solar mass NS

from GW170817 mathematically expressed as:

𝑝(Λ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
𝑉 exp(− (Λ−190)2

2×1202 ), if Λ ≤ 190

1
𝑉 exp(− (Λ−190)2

2×3902 ), if Λ > 190.
(2.8)

In the above equation, 𝑉 is the feature scaling constant such that the likelihood function integrates

to 1.

The sought function is the probability distribution of EoS parameters, so prior distribution 𝑔𝑖

is required to convert from likelihood to posterior using Bayes theorem. A commonly used prior is

the Gaussian distribution:

𝑔𝑖 (𝑚𝑖) =
1√

2𝜋𝜎2
𝑖

exp
(
− (𝑚𝑖 − 𝑚𝑖,prior)2

2𝜎2
𝑖

)
, (2.9)

where 𝑚𝑖,prior and 𝜎𝑖 are the prior mean and standard deviation of the free parameters, respectively.

They should be chosen to reflect our current understanding of those free parameters. For this, we

rely on Ref. [1] which summarizes the distributions of EoS parameters from three phenomenological

families, Skyrme, relativistic mean field (RMF) and relativistic Hartee-Fock (RHF). The mean and
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Table 2.1: Summary information of various models in Ref. [1]. The bottom half shows character-
istics of the prior and posterior distribution, respectively.

𝐿
(𝑀𝑒𝑉)

𝐾sym
(𝑀𝑒𝑉)

𝐾sat
(𝑀𝑒𝑉)

𝑄sym
(𝑀𝑒𝑉)

𝑄sat
(𝑀𝑒𝑉)

𝑍sym
(𝑀𝑒𝑉)

𝑍sat
(𝑀𝑒𝑉)

𝑚∗
sat
𝑚 𝜅𝑣

Skyrme Average 49.6 -132 237 370 -349 -2175 1448 0.77 0.44
Skyrme 𝜎 21.6 89 27 188 89 1069 510 0.14 0.37
RMF Average 90.2 -5 268 271 -2 -3672 5058 0.67 0.40
RMF 𝜎 29.6 88 34 357 393 1582 2294 0.02 0.06
RHF Average 90.0 128 248 523 389 -9956 5269 0.74 0.34
RHF 𝜎 11.1 51 12 237 350 4156 838 0.03 0.07
Weighted Average 69.0 -45.3 248 367 -114 -3990 3310 0.712 0.42
Weighted 𝜎 20.1 70.8 18.3 214 200 1530 989 0.06 0.17
Posterior Average 71.6 -76.9 245 436 -97 -3410 3490 0.74 0.41
Posterior 𝜎 16.5 66.0 23 219 202 1710 970 0.07 0.25

standard deviation of the parameters for each family are tabulated in the first six rows of Table 2.1.

In this study, the prior means and standard deviations are the weighted average values of the three

families, with weights of 0.500, 0.333, 0.167, respectively. The weights reflect our confidence in the

models. We give Skyrme EoS the most weight as it is the most heavily employed parametrization

in a myriad of nuclear predictions [3]. These relative weights are chosen ad-hoc, but should cover

most plausible parameter spaces. Prior means and standard deviations are listed in the seventh and

eighth rows, respectively, in Table 2.1.

Some parameter sets may yield nonphysical EoSs due to various additional considerations. The

filter condition 𝑤(M) takes that into account; it is set to 1 if the following three conditions of

stability, causality and maximum mass, are all satisfied and it is set to 0 otherwise.

The stability condition rejects EoSs whose pressure decreases with energy density. Above the

crust-core transition density, we require the EoSs to be mechanically stable with thermodynamical

compressibility greater than zero, which means that the pressure of homogeneous matter does

not decrease with density. For EoSs with negative compressibilities at density above the crust-

core transition densities predicted by Eq. (2.1), they will be rejected as being inconsistent with

experimental information.
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The requirement of causality rejects EoSs whose speed of sound is greater than the speed of

light in the core region of their respective heaviest NS. The maximum mass condition rejects EoSs

that fail to produce a NS of at least 2.04 solar mass in accordance with observation. [79, 80].

Using the fact that the binary NS merger GW170817 detected by LIGO did not promptly produce

a black hole, the heaviest possible NS should be around 2.17 solar mass [68]. Other sources put the

maximum mass at around 2.15-2.40 solar masses [81–86]. Neither of these constraints have been

adopted in here but can be implemented in the future.

The calculated probability distribution from Eq. (2.7) is referred to as the posterior distribution.

By comparing prior to posterior distribution, we will be able to infer the sensitivity of various

EoS parameters to NS tidal deformability. By construction, priors of different free parameters in

meta-modeling EoS are not correlated with each other, so any correlations in the posterior reflect

the collective sensitivity of the Taylor expansion parameters to NS tidal deformability.

The EoSs are sampled uniformly within ranges of plus or minus 2𝜎 from the mean values from

the seventh and eighth rows of Table 2.1. Each EoS is weighted by the product of filter condition,

prior and likelihood of Eq. (2.7). A total of 1,500,000 EoSs have been sampled and 682,652 of

them satisfy all of our constraints. Only 11,711 EoSs apply to all densities without switching to

the stiffest EoS.

2.3.2 Results for a 1.4-solar mass NS

After incorporating the constraint on Λ from gravitational wave observation of the merger of two

1.4-solar mass NSs by LIGO, posterior distributions of Taylor expansion parameters are shown

in Fig. 2.6. The lower triangular plots show the bivariate distributions for two parameters. The

diagonal plots show the prior (blue curves) and marginalized posterior distributions (red curves)

for each individual parameter. The upper triangle displays the Pearson correlation coefficients for

parameter pairs defined as,

𝜌𝑋,𝑌 =
E[(𝑋 − �̄�) (𝑌 − 𝑌 )]

𝜎𝑋𝜎𝑌
, (2.10)
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where E is the expectation value and 𝜎𝑋 and 𝜎𝑌 are the standard deviations of the parameters

distributions. The Pearson coefficient ranges from -1 to 1 and its absolute value reflects the strength

of the correlation. A positive value close to 1 indicates a strong correlation, a negative value close

to -1 indicates strong anti-correlation and a value close to 0 indicates lack of correlation [87]. Only

bivariate distributions between 𝐿, 𝐾sym, 𝐾sat, 𝑍sym and 𝑍sat are shown because the higher order

parameters do not seem to be influenced by our tidal deformability constraints. The full correlation

plot is included in Appendix D. Characteristics of the probability distributions are summarized in

the bottom two rows of Table 2.1.

Fig. 2.7 shows the mean and 2𝜎 region of pressure at different densities spanned by the EoSs

in the posterior. The 2𝜎 region converge to a line for E � 20 MeV/fm3, which corresponds to the

outer crust. Since we connect all EoSs to the crustal EoS given by Ref. [64], this convergence is

expected. From around 20 MeV/fm3 to 70 MeV/fm3, the spline connection kicks in and manifests

in the broadening of pressure.

The cut-offs in the lower left corner of 𝑍sym vs. 𝑍sat distribution and the upper left corner of

𝐾sym vs. 𝐿 distribution in Fig. 2.6 are the consequence of stability condition. At such extreme

values, speed of sound may be imaginary when extrapolating to NS of 2.04 solar masses. This

is evident in Fig. 2.8 in which 50 randomly selected EoSs from the cut-off region in 𝐾sym vs. 𝐿

are shown in the lower panel. The pressure for those EoSs do not increase monotonically with the

energy density and become mechanically unstable. These EoSs are discarded.

The posterior distributions of 𝐾sym and 𝑍sym differ from the prior distributions significantly.

The tidal deformability constraint favors lower 𝐾sym region. The inference also narrows the range

of possible 𝐿. Parameters such as 𝐾sat and 𝑍sat, whose posterior distributions are not altered

significantly reflect that they are not sensitive to the tidal deformability constraints.

While this Bayesian analysis is well suited to discuss the sensitivity of the deformability to

the Taylor expansions parameters 𝐿, 𝐾sym, 𝐾sat, etc., it has some limitations. In particular, we

note that the prior and posterior distributions of Λ as shown in Fig. D.1 (row 2 column 10 in

Appendix D) are drastically different, probably as a consequence of the narrow prior distributions
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Figure 2.6: Bivariate characteristics of posterior likelihood distributions. Three regions can be
distinguished. The lower triangle panels show likelihood distributions, with intensity proportional
to distribution value, for pairs of Taylor parameters. The diagonal panels display prior (blue) and
marginalized posterior (red) distributions for each parameter. The upper triangular region shows
Pearson correlation coefficient for parameter pairs. Three dots indicate weak correlations with
magnitude less than 0.1. Reprinted figure with permission from C.Y. Tsang et al., Phys. Rev. C
102, 045808. Copyright 2021 by the American Physical Society.
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Figure 2.7: Distribution of EoSs sampled from the posterior. The divergence above energy density
� 20 MeV/fm3 coincides with the transition from outer crust to spline connection. Reprinted
figure with permission from C.Y. Tsang et al., Phys. Rev. C 102, 045808. Copyright 2021 by the
American Physical Society.

Figure 2.8: Left panel: The 50 dots in the upper left hand corner of 𝐾sym vs. 𝐿 correspond to 50
randomly chosen parameter space within the stability cut-off region. Right panel: Unstable EoSs
that correspond to the 50 dots. The red and blue lines correspond to the red and blue points in the
upper panel, respectively. They are highlighted to showcase how a typical EoS in the cut-off region
looks like. Reprinted figure with permission from C.Y. Tsang et al., Phys. Rev. C 102, 045808.
Copyright 2021 by the American Physical Society.
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Table 2.2: Predicted tidal deformability for NS of different masses.

Λ(1.2) Λ(1.4) Λ(1.6) Λ(1.8) Λ(2.0)

Posterior Average 1490 624 281 132 64
Posterior 𝜎 310 129 61 31 17

of the Taylor expansion parameters listed in Table 2.1. This reflects the strong sensitivity of Λ to

the prior distributions of the EoS. Furthermore, the posterior distribution of Λ is much sharper and

peaked at 624 ± 129 which exceeds the value of 190+390
−120 from the analysis of the GW170817 [29].

While the GW constraint reflects the high density of NS core, the prior distributions of the Taylor

expansion parameters do not have rigorous laboratory constraints at high density region where Λ

is determined. In light of this disagreement, the ranges of Taylor parameters to be explored will

be expanded to plus-or-minus four standard-deviation from the average values in Table 2.1 with

uniform priors in Chapter 6.7 when we incorporate heavy-ion constraints into NS calculation.

2.3.3 Neutron star of different masses

In anticipation that more merger events involving different NS masses than the nominal NS mass of

1.4 solar mass will be observed in the future [88], we use the posterior EoS distributions to predict

deformability of NS with different masses. In Table 2.2, we provide our predictions for the tidal

deformabilities for NS with 1.2, 1.4, 1.6, 1.8 and 2 solar masses from the posterior distributions.

To show the sensitivity of these predictions to the Taylor parameters, the bivariate distributions

between the Taylor parameters from the posterior and the predicted tidal deformabilities on different

stellar masses are shown in Fig. 2.9. We find that Λ is more strongly correlated with 𝐿 and 𝐾sym

than it is with higher order Taylor expansion parameters. The sensitivity to 𝐾sym increases, while

the sensitivity to 𝐿 decreases, with stellar mass.

To quantify this dependence of sensitivity on mass, the Pearson correlation coefficients for a few

selected Taylor parameter pairs are shown in Fig. 2.10. A gradual reduction in correlation between

𝐿 and tidal deformability is observed as the mass of a NS increases. This is expected as relevant
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Figure 2.9: Bivariate distributions between deformabilities with NS of different masses and Taylor
parameters. Correlation with tidal deformability is clearly seen with 𝐿, 𝐾sym and 𝑃(2𝜌0). Reprinted
figure with permission from C.Y. Tsang et al., Phys. Rev. C 102, 045808. Copyright 2021 by the
American Physical Society.

average density for more massive stars shift upward and away from those directly impacted by 𝐿. A

high density parameter 𝑃(2𝜌0), the pressure for pure neutron matter at twice the saturation density,

is also included in Figs. 2.9 and 2.10. The strong correlation between tidal deformability and

𝑃(2𝜌0) is consistent with prior works [17, 29, 38, 89]. While this strong correlation is maintained

for both heavy and light NSs, the slope of the correlation becomes smaller reflecting the decrease

in average values and variations of Λ with stellar mass.

Such decrease is correlated with an increase in stellar compactness. Using the posterior

distributions of Taylor expansion parameters, predictions can be made on the relation between

stellar mass and inverse compactness (𝑅/𝑀). Fig. 2.11 shows tidal deformability plotted against

inverse compactness, with calculation results for 1.2, 1.4, 1.6 and 1.8 solar mass NS all combined

together. It is consistent with Eq. (1.9) where Λ ∝ 𝑘2(𝑅/𝑀)5. The best fitted power law has an

index of 5.84 due to additional interdependence of tidal Love number 𝑘2 and 𝑅/𝑀 . The result is

consistent with Refs. [28, 90, 91].

We found that independently and in parallel, Ref. [75] conducts a very similar analysis using

ELFc. Our work examines correlations between more parameters and our study extends to higher

mass neutron star. Ref. [75] uses much wider priors while our prior is more restrictive and provide
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Figure 2.10: Pearson correlations for different NS masses. Reprinted figure with permission from
C.Y. Tsang et al., Phys. Rev. C 102, 045808. Copyright 2021 by the American Physical Society.

Figure 2.11: Tidal deformability vs. inverse compactness for 1.2, 1.4, 1.6, 1.8 solar mass NS.
Reprinted figure with permission from C.Y. Tsang et al., Phys. Rev. C 102, 045808. Copyright
2021 by the American Physical Society.
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finer details in a smaller phase-space. In addition, they apply additional constraints on the EoS

using data from 𝜒EFT approach and ISGMR collective mode. Even though their extracted 𝑄sat

and 𝐾sym values are consistent with our extracted values, details in the correlations are not the

same. The subtle differences suggest that Bayesian analysis results depend on the choice of priors

and constraints applied to the EoS.
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CHAPTER 3

S𝜋RIT DATA ANALYSIS

3.1 S𝜋RIT experiment

In the S𝜋RIT heavy-ion experiment, the particle accelerators are provided by the Radioactive

Isotope Beam Factory (RIBF) at RIKEN, JAPAN. Tin isotopes are accelerated to 270 MeV/u. The

target is an isotopically highly enriched stationary Tin foils and the main particle detector is the

S𝜋RIT time projection chamber (TPC). In this chapter, the configuration and working principle of

the accelerators and S𝜋RIT TPC will be briefly described. Details can be found in Ref. [92].

3.1.1 Radioactive Isotope Beam Factory (RIBF)

RIBF produces rare Tin isotope secondary beams from relatively stable primary beams. This

primary beams are created by accelerating the primary ions progressively by a linear acceler-

ator (RILAC) and four coupled cyclotrons (RRC, fRC, IRC and SRC) to reach a beam energy

of 345MeV/u. The ions are guided to hit a rotating Be target, which breaks the primary ion down

to smaller fragments, and in some events one of these fragments is the desired Tin isotope. For the

creation of neutron-rich 132Sn and 124Sn beams, 238U primary ion is used and for less neutron-rich
112Sn and 108Sn beams, 124Xe is used.

The fragments are selected by the BigRIPS spectrometer, which is a series of dipole magnets,

slits and wedge degraders arranged in such a way that only particles within a narrow range of

magnetic rigidity (𝐵𝜌 = 𝑝/𝑍 , where 𝑝 is the momentum magnitude and 𝑍 is the charge) can pass

through. It filters out most of the undesirable fragments, but some contaminating isotopes can

still pass through. To select events from a particular isotope, scintillators and ion chambers are

set-up along the beam line after the spectrometer. They measure the time-of-flight (ToF) and charge

number (Z) of isotopes that reaches the S𝜋RIT detector respectively. 𝐵𝜌 is calculated from ToF

information and magnet settings in BigRIPS. When it is used in conjunction with the charge state
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Figure 3.1: An overview of RIBF extracted from Ref. [5], with accelerators on the left, fragment
separator BigRIPS in the middle and SAMURAI spectrometer on the top right.

information, we can identify the isotope that passes through BigRIPS event by event. This beam

selection process is described in Ref. [2]. In this work, only events from the desired Tin isotopes

are analyzed.

The configuration of RIBF is illustrated in Fig. 3.1. The BigRIPS guides the Sn beam towards

SAMURAI dipole spectrometer, where the S𝜋RIT TPC and the associated auxiliary detectors were

installed inside..

3.1.2 S𝜋RIT Time Projection Chamber (TPC)

The S𝜋RIT TPC is a rectangular detector designed to measure momentum distributions of pions

and other light fragments from fixed target collisions. It has an detection volume of dimensions

86.2 cm × 51.3 cm × 134.4 cm (width, height, length). It was surrounded by auxiliary trigger

detectors on both sides and downstream. The TPC and trigger detectors are placed inside the

SAMURAI dipole magnet which provides a near uniform 0.5 T magnetic field. Please refers to

Ref. [93] for details of SAMURAI spectrometer.
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Figure 3.2: A cartoon illustration of the principal components of the S𝜋RIT TPC. The pads are not
drawn to scale as there are 12096 pads in the pad plane.

Fig. 3.2 is a simplified cartoon that illustrates the working principle of the S𝜋RIT TPC. The

detection volume called the field cage was filled with 90% Ar and 10% CH4 (P10 gas) at atmospheric

pressure. When charged particles pass through the detector volume, they interact with and ionize

the gas molecules, leaving behind trails of free electrons and positive ions.

Magnetic and electric fields inside the detection volume force trailing electrons to drift upward

and positive ions downward. The electric field is created by the walls of the field cage, which

is made of PCBs and depicted as the brown vertical walls in Fig. 3.2. The field cage consists of

50 vertically stacked layers of copper strips, with each layer wraps around the detection volume

horizontally and is electrically isolated from nearby layers. During operation, maximum voltage is

applied to the top layer and gradually lowered voltages are applied to each successive lower layers.
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This potential gradient on the boundary creates a uniform electric field.

Once the drift electrons reach the top of the TPC, they enter the wire plane region, which

consists of three planes of gating grid, anode wire and ground wire from bottom to top. When

drift electrons enter the volume between anode and ground wires, they are accelerated to speed

high enough to ionize gas molecules by the large potential difference between these two layers.

Electrons from these ionized molecules are also accelerated to create more electrons. This electron

multiplying process is called avalanche and it amplifies the signal from the drift electrons, but

a lot of unwanted positive ions are also created. They drift back into the detection volume by

electrostatic force and if too many are present, the uniform electric field will be distorted. To

maintain the uniformity of electric field, the gating grid is placed below anode wire to prevent

excessive electrons from entering the anode in the first place [94, 95]. One of the major sources

of excessive electrons is collision events that do not satisfy trigger conditions. The gating grid

consists of a series of parallel wires. When trigger conditions are not met, the grid is set to “close”

configuration such that the voltages of the wires are staggered. Electrons approaching the grid are

pushed towards and absorbed by gating grid wires with lower voltage. When trigger condition is

satisfied, the grid is set to “open” configuration such that voltages of all wires are identical. This

allows electrons to move upward unimpeded. Simulation shows that average transparency is 100%

in “open” position and 0% in “close” position [7], which means that the gating grid is very close

to being perfect. The movement of drift electrons when gating grid is “open” and “close” are

illustrated in Fig. 3.3. Despite the fact gating grid is calculated to be almost perfect in electron

blocking, in practice electrons were still able to pass through wire plane at the downstream side of

the detector due to the fact that gating grid do not completely cover the filed cage. Electrons and

ions that leak through the gap creates subtle but noticeable effect on track recognition. The effects

of incomplete gating grid coverage is the focus of Section 3.3.3.

The induced electrons from avalanche enters the pad plane, which consists of pads (pixels) that

detect the amount of drifting electrons they come into contact with. There are 112 layers of pads

along 𝑧-direction and 108 rows along 𝑥-direction, with the size of each pad being 1.2 cm × 0.8 cm
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Figure 3.3: Cartoon depiction of the electric field configuration of the grating grid in “open”
configuration (left) and “close” configuration (right).

(length, width). Signal from all pads can be combined to trace the two-dimension projection of

the fragment trajectory along the horizontal (𝑥-𝑧) plane. This is illustrated in Fig. 3.2 where the

red cells corresponds to pads with signal and the blue curve corresponds to the two dimension

projection of a fragment track on the pad plane. Vertical information for each track can be inferred

from the signal detection time on each pad relative to the start counter time-stamp. Electrons drift

at a constant speed of 5.42 ns/μm in S𝜋RIT TPC [96] so electrons that originate from lower vertical

position takes longer to reach the top.

Trajectories of charged fragments inside the TPC are curved due to magnetic field. The

curvature of each track is indicative of their corresponding momentum over charge (𝑝/𝑍) value.

With appropriate curve fitting routine, we can reconstruct momentum distributions of various

fragments. Such procedures will be described in details in later chapters.

3.1.3 Beam Drift Chambers (BDC)

To boost the momentum distributions from laboratory frame to center-of-mass frame, we need

to measure the angle of incidence of projectile for each event. This is achieved with a pair of

Walenta-type detectors called Beam Drift Chambers (BDCs). They are placed upstream of the

target along the beam pipe [2].
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These chambers consist of two sets of Parallel Plate Avalanche Counters (PPACs). They

are approximately 1 m apart along the beam line. PPAC is a thin rectangular box filled with

methylpropane gas. The two sides of the PPAC consist of metallic strips that detects the presence

of electrons from the ionization of methylpropane gas as particles move through the detector. The

time difference between signals from both ends of the strips tell us the location of the beam particle

as it passes through, therefore two readings from the two PPACs can be interpolated to estimate the

angle of incidence. The uncertainty in BDC beam angle of the order of magnitude of 0.1 μrad [2].

3.1.4 KYOTO array and KATANA veto bars as trigger detectors

The four major triggers in the S𝜋RIT experiment are the Scintillating Beam Trigger (SBT), Active

Veto Array, KYOTO Multiplicity array and KATANA veto bars. Given that the primary objective

of the experiment is to measure pions created in central collisions [97], the triggers are set-up to

favor central collision events and disproportionately rejects peripheral events.

SBT is located 4.5 m upstream of the detector. It is a plastic scintillator that serves as a start

counter when a beam particle registers a hit. Active veto array consists of four plastic scintillators

immediately upstream of the target forming a rectangular frame with a smaller rectangular hole in

the middle. The hole allows for beam particles with small angle of incidence from BigRIPS to

pass through. Veto array is hit only if beam particle arrives off-center so events with a signal from

veto array are rejected. Both the SBT and active veto array detectors are set-up to maintain beam

quality on recorded events.

The remaining two detectors, KYOTO array and KATANA veto bars, are set-up to dispro-

portionately reject peripheral events by selecting events with high multiplicity and low residual

projectile mass. They are depicted as the transparent walls surrounding the TPC in Fig. 3.4.

These conditions skew the multiplicity distribution away from what is expected from the geometric

cross-section.

The KYOTO multiplicity arrays are the two arrays flanking the left and right sides of the S𝜋RIT

chamber. Each side consists of 30 tightly packed rectangular plastic scintillator bars, each with
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Figure 3.4: Illustration of KATANA and KYOTO arrays. KYOTO arrays surround the chamber
on the left and right sides and the KATANA array is located immediately downstream. Part of the
KATANA array contains the two narrow bars with deeper shade of gray and the one between them
are the veto paddles used in trigger condition.

dimensions of 450 × 50 × 10 mm (height, length, width). Scintillators are materials that emit

photons when they interact with radiation, including charged particles. The photomultipliers at the

ends of the bars will pick up the photons and convert it to electronic signal to record if and where

charged particles hit KYOTO arrays. The hardware specifications are detailed in Ref. [98].

Krakow KATANA veto bars are three scintillating paddles at the downstream end of the S𝜋RIT

chamber, shifted slightly left of the beam axis to intercept the heavy residue traversing the magnetic

field [2, 99]. The signal amplitude is proportional to the charge state 𝑍 of the residue. The trigger

condition is set to only accept events where charge of heavy residue hitting KATANA is � 20 with

at least four KYOTO bars being hit simultaneously.
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3.2 Data analysis

The S𝜋RITROOT framework is developed to analyze data from S𝜋RIT TPC [100]. It is

developed based on the FAIRROOT framework which offers modular design pattern with different

tasks running sequentially to convert raw electronic signal to physical observables step-by-step.

These tasks can be classified into two groups: track level tasks and particle level tasks. The former

deals with recognizing tracks from pad signals and the latter deals with reconstructing observables

given the fitted tracks. Track level tasks for all fragments and particle level tasks for pions are

detailed in Refs. [2, 7] so they are only reviewed briefly here. Particle level tasks for light fragments

are newly developed and will be discussed in more details.

3.3 Track Level analysis

This section describes analysis tasks that are required to recognize particle tracks from pad

signals. Different tasks are run sequentially, in the order that they are presented below. Each task

has access to output of any tasks that are executed before itself.

3.3.1 Decoder, PSA and Helix and Correction task

The Decoder task translates the raw data of binary files from TPC into a C++ readable data

structure called the STRawEvent class [6]. This class contains multiple instances of STPad class,

each corresponds to an individual pad. Each instance of STPad class encapsulates the digitized

electric pulses from the corresponding pad.

The PSA task uses data from STRawEvent class to identify the amount and arrival time of drift

electrons for all pads. Pulse of a single packet of drift electrons follows a standard shape whose

height is proportional to the amount of electrons in that packet. Since it is common to have multiple

tracks passing under a pad at different height, the detected pulse is often a linear combination of

multiple standard pulses, each with different amplitudes and rise times. PSA Task de-convoluted

the combined signal into its constituent pulses as illustrated in Fig. 3.5. We called each of these

pulse a hit. The fitted amplitude and rise time will be stored in a data structure called the STHit
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Figure 3.5: An example result from pulse analysis showing decomposition of individual pulses.
Taken from Ref. [6].

class. Vertical location is then calculated by comparing the rise time of a pulse with start time of

an event.

To the first order approximation, locus of charged particles under magnetic field is the arc of a

circle. Helix task uses Riemann track finding algorithm to group hits from each event into disjoint

sets such that hits from each set forms an arc [101]. The fitted arc and the grouping of hits are

stored in another data structure called STHelixTrack class.

The next task is the correction task which extends the dynamic ranges of 𝑑𝐸/𝑑𝑥. The signal

strength in some pads are off-scale high (i.e. the digitized signal saturates at the maximum ADC

channel) which renders its energy loss information unreliable, but usually such pads are surrounded

by multiple pads with lower signal amplitude. Avalanche electrons spread across an area and these

nearby pads detect the tails of the electron distribution. The correction task uses signals from these

nearby pads to estimate the expected signal amplitude on the saturated pads [102].

3.3.2 Space Charge effect

Space charge effect is a distortion caused by the accumulation of positive ions in the detection

region. Reaction cross-section of Sn + Sn collision is so small that 98% of incoming projectiles
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Figure 3.6: The drak red sheet illustrates the assumed shape of the positive ion distribution inside
the S𝜋RIT TPC.

pass through the target foil without a collision [96]. When these un-reacted and highly charged

projectiles transverse the detector volume, they ionized a lot of gas molecules. The ionized electrons

are pushed upwards by the E- and B-field. They drift relatively quickly and are promptly removed

by gating grid or anode wire. The massive positive ions, however, drift downward at much slower

speed. Ions from a projectile do not have time to clear the height of the TPC before the next

projectile enters the detector, which causes ions to accumulate. The resultant charge configuration

can be approximately described as a sheet charge extending downward from the beam track as

Fig. 3.6 illustrates. The figure also shows the coordinate systems for S𝜋RIT data, where the origin

is located at middle of the front edge of the active pads and at the same height as the pad-plane.

Furthermore, the 𝑥− axis points towards the left when looking in the direction of beam particle to

form a right handed coordinate system. The sheet charge is expected to be approximately uniform

as drift velocity of ions is constant.

Their presence in the detection volume distorts the otherwise uniform E-field. This slight
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Figure 3.7: Proton momentum distribution when gated on particles with 𝑃𝑥 > 0 (Beam left) and
𝑃𝑥 < 0 (Beam right). The two distributions are expected to be identical due to cylindrical symmetry
of the reaction.

distortion has negligible impact on trajectories of reaction fragments due to their strong inertia,

but the same cannot be said for drift electrons. They acquire a "side-way" component to its drift

velocity which distort the observed curvatures on pad plane. Other TPCs, like the STAR TPC,

measure such distortion directly with lasers [103], but this equipment was not available during the

S𝜋RIT experimental campaign. Below are two strange features from our data that can be attributed

to space charge effect.

Fig. 3.7 is the proton center of mass momentum distribution for forward emitting (i.e. 𝑃z > 0

in center of mass frame) tracks. The procedure needed to identify proton, correct for detection

efficiency and transform data into center of mass frame will be discussed later in Section 3.4.

Only tracks with azimuth of −30◦ < 𝜙 < 20◦ (beam left) are selected in the blue histogram and

only tracks with azimuth 160◦ < 𝜙 < 210◦ (beam right) are selected in the green histogram. It

is important to note that the 𝑥-axis is defined with respect to detector orientation instead of the

reaction plane. The two distributions should be similar due to cylindrical symmetry arguments, but

they are not.
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Figure 3.8: (a): Cartoon illustration of the definition of �Δ𝑉 . (b): The distribution of Δ𝑉𝑥 for
particles with 𝜃 > 40◦. Blue histogram composes of tracks going beam left and green histogram
with tracks going beam right. The definition of Δ𝑉𝐿𝑅 is illustrated on the plot as the distance
between the peak locations of blue and green histograms.

Another curious feature is found when distance to vertex distribution is examined. The recon-

structed tracks can be extrapolated back to the target plane and the extrapolated point should agree

with the measured vertex location from BDC. The displacement vector between the extrapolated

vertex and the measured BDC vertex location is denoted as �Δ𝑉 . The definition of this vector is

illustrated in Fig. 3.8a.

The distribution of 𝑥-component of �Δ𝑉 , denoted as Δ𝑉𝑥 , should be Gaussian-like with peak

centered at zero. Our data, however, shows that the peak location changes with track azimuth.

Fig. 3.8b shows the Δ𝑉𝑥 distributions of fragments going in beam left and beam right direction for

tracks with polar angle 𝜃 > 40◦. Neither distribution peaks at 0 mm.

Evidence that supports space charge as the causative effect of these features can be found by

correlating �Δ𝑉 with beam intensity. Denote Δ𝑉𝐿𝑅 as the separation between the two peaks of Δ𝑉𝑥

distributions in Fig. 3.8b. It is observed that Δ𝑉𝐿𝑅 is directly proportional to the beam intensity of

the run. This correlation is shown in Fig. 3.9 and since the strength of space charge effect is also

proportional to the beam intensity, it is an indication that our observed features are related to space

charge.
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Figure 3.9: Difference in peak location Δ𝑉𝐿𝑅 is plotted against beam intensity showing a strong
positive correlation.

If space charge is indeed responsible for our observations, we should be able to correct for it as

the effect of space charge is described by well established equations. To begin with we need to solve

the Poisson’s equation for the distorted E-field. The field follows Dirichlet boundary condition as

field cage fixes potential on boundaries of the TPC. The sheet charge distribution is approximated as

uniform and its magnitude is denoted as 𝜎SC, whose value will be determined later. The curvature

of the sheet is easily calculated as it follows the trajectory of un-reacted Sn projectile. After that we

calculate the expected lateral electron movement by solving equation of motion given by Ref. [104],

𝑑�𝑥
𝑑𝑡

=
𝜇

1 + (𝜔𝜏)2
(
�𝐸 + 𝜔𝜏

�𝐸 × �𝐵
| �𝐵|

+ 𝜔2𝜏2 �𝐸 · �𝐵
| �𝐵|2

�𝐵
)
. (3.1)

This equation describes the averaged motion of charged particles moving through gaseous

medium under E- and B-field. 𝜔 = 𝑒𝐵/𝑚 is the cyclotron frequency, 𝜏 is the mean free time between

collisions and 𝜇 = 𝑒𝜏/𝑚, where𝑚 and 𝑒 are the mass and the signed electric charge of electrons/ions

respectively. This equation can be solved to find the expected amount of lateral movement acquired
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Figure 3.10: The recovered sheet charge density 𝜎SC is plotted against beam intensity for five
selected runs. The fitted linear line is used to approximate the sheet charge magnitude for the other
runs.

by drift electron when initial conditions are given, and during track reconstruction the measured hit

points will be shifted literally in the opposite direction to compensate for space charge distortions.

The remaining loose end is the determination of 𝜎SC. Since ΔLR is expected to center at

zero when space charge effect is corrected, we vary 𝜎SC in track reconstruction until ΔLR = 0.

This procedure of varying 𝜎SC is computationally intensive as track reconstruction algorithms

need to be run multiple times for each run, so only five selected runs with wildly different beam

intensities are determined this way. The 𝜎SC for these five runs are plotted against beam intensities

in Fig. 3.10. This linear relation will be used as an estimation of 𝜎SC for all other runs. When

tracks are reconstructed after space charge effect correction, the proton momentum distributions of

beam left and beam right particles in Fig. 3.11 now agree with each other. It is also verified that 𝑝𝑧

and 𝑝𝑇 distributions between beam left and right particles also agree better after the correction.
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Figure 3.11: Center of mass proton momentum distribution for experimental data with 𝑃𝑧 > 0 after
space charge distortion is corrected. "Beam left" histogram is populated only with tracks emitted at
−30◦ < 𝜙 < 20◦ and "Beam right" histogram is populated with tracks emitted at 160◦ < 𝜙 < 210◦.
The two histograms agree with each other much better than those obtained before space charge
corrections shown in Fig. 3.7.

3.3.3 Leakage Space Charge effect

Due to design issues, the gating grid does not extend all the way to the end of the field cage. The

gap of length 3.96 cm between the end of gating grid and the downstream wall of the field cage

allows drift electrons from highly charged heavy residue fragment to leak into the avalanche region

as Fig. 3.12 illustrates. The positive ions induced by the avalanche process in the anode wires then

leak back into the field through the same gap. Ions pour out of the gap continuously as they drift

steadily from the top to the bottom of the TPC, forming a sheet like positive charge configuration.

This type of sheet charge will be referred to as “leakage” space charge 𝜎leak to distinguish it from

the “beam” space charge described in previous section.

The presence of leakage space charge means that even after correcting for beam space charge

effect, experimental momentum distributions of particles in some phase space regions with tracks

that extend past the end of the grating grid should still be unreasonable. This can be demonstrated
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Figure 3.12: Sketch of gating grid near the rear end of S𝜋RIT TPC, taken from Ref. [2]. Electrons,
represented as the red points, leak into the anode plane from the gap between gating grid and top
perimeter and induce positive ions.

by comparing momentum distributions in three different azimuth regions in Fig. 3.13a where Cut

1 corresponds to 74◦ < 𝜙 < 132◦, cut 2 corresponds to −29◦ < 𝜙 < 29◦ and cut 3 corresponds to

−86◦ < 𝜙 < −143◦.

With an ideal detector, the momentum distributions in all three cuts should be identical due

to cylindrical symmetry. With S𝜋RIT TPC, however, we expect momentum distributions to agree

with each other only when polar angle cut of 6◦ < 𝜃 < 12◦ is imposed because tracks with large

polar angle suffer from geometric coverage issues.

The TPC height is shorter than its width, so large polar angle tracks with 𝜙 ≈ ±90◦ (moving

up or down) will leave a shorter trail of ionized electrons in the field cage than those with 𝜙 ≈ 0◦

or 𝜙 ≈ 180◦ (moving sideways). Shorter tracks are reconstructed less efficiently due to the lack of

available hit points. To summarize, for tracks with large polar angles, the momentum distributions

in the three cuts are expected to disagree with each other due to geometric efficiencies. On the other

hand, tracks with small polar angles do not escape from the sides or top or bottom. They mostly

escape from the end of the TPC. The average track length in these three cuts should be similar for

tracks with small polar angle. Therefore it is expected that momentum distributions in the three

cuts with small polar angle condition will agree with each other. The three cuts and small polar

angle condition are illustrated in Fig. 3.13b in 𝜙 vs. 𝜃 plots, with experimental proton distribution
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Figure 3.13: (a): Not to scale illustration of the three azimuthal angle cuts when viewed along the
beam axis. Beware that 𝑥-axis points toward the left in our right-handed coordinate system and
𝑧-axis points into the page, as indicated by the circle with a dot in the center of the image. (b):
The three cuts are drawn as red, magenta and blue rectangle on 𝜙 vs. 𝜃 phase space. The colored
histogram plotted behind the three cuts is the proton phase space distribution from experiment. See
text for details and we will revisit this phase space plot in Fig. 3.24.

of 132Sn + 124Sn with number of clusters > 15 and distance to vertex < 15 (the definition of these

conditions will be detailed in Section 3.3) plotted in the background.

Unfortunately, even with 6◦ < 𝜃 < 12◦ imposed, the momentum distribution in cut 3 still looks

different from that in cuts 1 and 2, contrary to our expectation. The Triton distributions in all three

cuts are plotted in Fig. 3.14a. Triton is selected as it has the highest average 𝑝/𝑍 value among all

light fragments so the discrepancy is the most prominent.

Although the behavior of both leakage and beam space charge can be described by Eq. (3.1),

they affect tracks in different phase space regions due to differences in their charge configuration.

The expected shapes of the space charge sheets are shown in Fig. 3.15 with leakage space charge

located at the rear end of the detector, therefore hit points in the forward half of the detector should

not be affected by leakage charge. Furthermore, charge density of leakage space charge is much

higher than beam space charge due to the magnifying effect of the avalanche. Detailed analysis in

the later sections reveals that the charge density of leakage space charge is 9.8 times that of normal

beam space charge.
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Figure 3.14: Triton momentum distributions in the three azimuth cuts and 6◦ < 𝜃 < 12◦ after
space charge correction is applied. (a): Track reconstructed with all available hit points. (b): Track
reconstructed only with hit points at 𝑧 ≤ 100 cm.

Figure 3.15: Approximate shape of the leakage and normal sheet charges. The length of the leakage
space charge is only 3.96 cm and extend all the way from pad plane to the bottom of the TPC.
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There are strong evidences that leakage space charge is the cause of the discrepancy in Fig. 3.14a.

First and foremost, most detector distortions, such as the beam space charge and geometric ineffi-

ciencies have been corrected for or circumvented with our correction algorithms and polar angle

cuts. Second, if we plot Fig. 3.14a again but with hit points beyond 𝑧 = 100 cm discarded during

track reconstruction, we get Fig. 3.14b where the discrepancy in momentum distributions among

the three cuts are eliminated. The causative agent of the distortion must be located at the rear end

of the detector. Third, if we include additional leakage sheet charge in the space charge correction

algorithm, it eliminates the discrepancy without discarding any hit points.

To incorporate leakage charge into space charge correction, we need to estimate its shape and

charge density. The shape, as illustrated in Fig. 3.15, is approximated as the last 3.96 cm of normal

beam sheet charge but extended all the way to the top of the TPC. Charge estimation is more

complicated as the procedure in Section 3.3.2 for beam space charge cannot be used here. In

previous section, 𝜎SC is varied until Δ𝑉𝐿𝑅 = 0, but this cannot be done for leakage charge as it

is located at the downstream side of the detector while the vertex is located at upstream. As an

alternative, we will vary the leakage charge density until the reconstructed momentum remains

unchanged before and after discarding downstream hit points.

The reconstructed Triton momentum in cut 3 changes as the 𝑧 coordinate threshold varies, the

threshold beyond which hit points are discarded. When reconstructed Triton momentum with a

particular 𝑧 threshold is plotted against that with another 𝑧 threshold track-by-track inside cut 3,

we get a two-dimensional distribution. The two dimensional plot needs to be simplified such that

results with different 𝑧 thresholds can be compared on a single graph. To do this, the distribution

is cut into slices along 𝑥-axis and only the mean 𝑦-value for each 𝑥-slice is shown. For comparison

sake, momentum reconstructed with various 𝑧 thresholds are all compared to that with a standard

𝑧 < 100 cm threshold, the threshold at which momentum distributions in all three cuts agree with

each other. Fig. 3.16a is the comparison plot with different 𝑧 thresholds, and the slope of each

line will be referred to as "Triton consistency". Without leakage space charge, Triton consistency

should always be one. Deviation from unity indicates distortions. Triton consistencies are plotted
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Figure 3.16: (a) plots the average Triton momentum reconstructed with different 𝑧-thresholds against
that with a standard 𝑧-threshold of 100 cm. (b) shows the slopes (labelled as Triton consistency)
for each line in (a) as a function of their respective 𝑧-threshold.

against their respective 𝑧 thresholds in Fig. 3.16b, which shows that it is monotonically increasing

with 𝑧-cut value, with a sudden change in slope at 𝑧-cut equals to 120 cm.

The goal is to vary the leakage charge density in the space charge correction task until Triton

consistency stays at one regardless of 𝑧 threshold values. It is computationally expensive to

estimate 𝜎leak for each run, so instead we assumed that 𝜎leak ∝ Beam rate and Beam rate ∝ 𝜎beam.

This approximation stems from the fact that leakage charge is induced by beam particles. The

proportionality factor between 𝜎leak and 𝜎beam, denoted as 𝑎, is assumed to be constant across runs

with different beam intensities. Fig. 3.17a demonstrates how Triton consistency vs. 𝑧-cut changes

with 𝑎 by scanning through multiple test values.

The desired slope and 𝑦-intercept of the fitted linear lines in Fig. 3.17a are zero and one,

respectively. These two conditions allow us to determine 𝑎 in two ways: 1. Interpolate slope as a

function of 𝑎 and find where slope = 0 corresponds to, and 2. interpolate 𝑦-intercept as a function

of 𝑎 and find where intercept = 1 corresponds to. The former is performed in Fig. 3.17b and the
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Figure 3.17: (a): Triton consistency vs. 𝑧-threshold when different values of 𝑎 are used. Ideally we
want 𝑎 to be set such that Triton consistency is always one at all 𝑧-thresholds. (b) and (c): Slopes
and intercepts of the linear fits of the four lines in (a), respectively.

latter is performed in Fig. 3.17c. Both methods yield 𝑎 = 9.8. It is verified in Fig. 3.18, which is

the same as Fig. 3.14a but with leakage correction performed at 𝑎 = 9.8, that the correction is able

to eliminate the discrepancy in momentum distributions.

The gating grid is modified after the last experiment such that the gap is covered with Aluminum

plate [2]. It blocks electrons from entering the wire plane and leaking out into the detection volume

through the gap. Future experiments involving S𝜋RIT TPC will not suffer from leakage space

charge distortion.

3.3.4 GENFIT task

The corrected hit points are passed onto the final GENFIT task. It uses a well established tracks

fitting routine called GENFIT to reconstruct momentum for each track [105]. It offers greater

reconstruction accuracy when compared to Helix task as it takes energy loss in the medium and

non-uniformity of the magnetic fields into account. The grouping of hits and rough momentum

estimates from Helix task are used as initial guess for GENFIT. Another function of GENFIT task

is to find the location of vertex using the RAVE vertex finding package [106]. Events where vertex

is located too far upstream or downstream of the target plane will be rejected from the analysis as

these events most likely do not originate from the targets.
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Figure 3.18: Same as Fig. 3.14 (a), but leakage space charge has been corrected with 𝑎 = 9.8.

In general, there are too many clusters close to each other near the reaction vertex. The chances

of these clusters being misidentified are high, so they are also not used in the track fitting. Hit

clusters that are too close to the edges of the detector volume are not used for track recognition as

well as they suffer from edge effects that render their hit locations unreliable [7]. For a hit to be

used in momentum reconstruction, all of the following conditions must be satisfied,

|𝑥 | ≤ 420 mm,−522 mm ≤ 𝑦 ≤ −64 mm,( 𝑥

120 mm

)2 +
(
𝑦 − 𝑦beam height

100 mm

)2
+

(
𝑧 − 𝑧target foil

220 mm

)2
> 1.

The numbers are expressed using the coordinate system of Fig. 3.6. The condition on the

second line represents an ellipsoid cut centers at reaction vertex. Geometric measurement of our

experimental set-up shows that 𝑦beam height = −260 mm and 𝑧target foil = −11.9 mm.

This task is executed twice. It is first run without using vertex location from BDC measurement

in curve fitting, and then again with the inclusion of vertex location. The purpose of the first run is

to isolate tracks that do not converge to a common vertex and the second is to improve momentum

resolution by incorporating the accurately know vertex location from BDC into GENFIT routine.
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3.4 Particle level analysis

This section shows steps that are needed to reconstruct accurate particle spectra from the

reconstructed tracks. A short summary on the cut conditions is given in Section 3.4.5.

3.4.1 Particle identification

As particle traverse the TPC, it losses energy and ionizes the detector gas molecules. The average

amount of energy loss depends on particle velocity and electric charge according to Bethe-Bloch

equation (BBE) [107],

−
〈
𝑑𝐸

𝑑𝑥

〉
=

𝐾𝑍2

𝛽2

[
ln

(
𝐶𝛽2

1 − 𝛽2

)
− 𝛽2

]
. (3.2)

In the above equation, 𝐾 and 𝐶 are constants that depend only on the properties of detector gas,

𝛽 = 𝑣/𝑐 is the particle’s velocity over speed of light and 𝑍 is the absolute particle electric charge

in multiples of the electron charge. This allows for different particle types to be identified through

a plot of average energy loss per unit length vs. momentum, commonly referred to as the PID plot.

In such a plot, different elements are separated in accordance to 𝑑𝐸/𝑑𝑥 ∝ 𝑍2. Isotopes with equal

velocity lose the same amount of energy, but they have different momentum due to their difference

in mass so isotopes are also separated into distinguishable lines.

PID plot for 132Sn + 124Sn reaction is shown in Fig. 3.19. Just from visual inspection, the

boundaries between PID lines of various species are sometimes not very clear, most noticeably the

Triton line and 3He line are very close at 𝑝/𝑍 < 700 MeV/c. To estimate the degree of cross-

contamination and to classify particle type for each track, we follow the Bayesian PID method

outlined in Ref. [108].

Instead of classifying each track as a single type of particle, this method tabulates the probability

of a track being each type of isotope. A single track can be identified as multiple isotopes with

varying probabilities in the ambiguous region of PID. For a track with observed momentum
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Figure 3.19: Particle identification plot with all events in 132Sn + 124Sn. The charged particles,
p,d,t,3He and 4He as well as the charged pions are labelled. The horizontal appendages from the
pions are electrons an positrons resulting from the decay of 𝜋0.

magnitude 𝑝, the likelihood of detecting energy loss 𝐸 given that it comes from a particle of type

𝐻𝑖 is given by,

𝑃(𝐸 |𝑝, 𝐻𝑖) =
1√

2𝜋𝜎(𝑝, 𝐻𝑖)
𝑒
− (𝐸−�̂� (𝑝,𝐻𝑖))2

2𝜎(𝑝,𝐻𝑖)2 . (3.3)

In the equation, �̂� (𝑝, 𝐻𝑖) is the expected energy loss and 𝜎(𝑝, 𝐻𝑖) is the measured width of

PID line. The resolution in both momentum and 𝑑𝐸/𝑑𝑥 measurements contribute to the width of

PID lines [7]. Using Bayes theorem, it can be inverted to give the probability of the track being 𝐻𝑖

given the energy loss and momentum value,

𝑃(𝐻𝑖 |𝑝, 𝐸) =
𝑃(𝐸 |𝑝, 𝐻𝑖)𝑃𝑟 (𝑝, 𝐻𝑖)∑

𝑘=𝑃,𝐷,𝑇,... 𝑃(𝐸 |𝑝, 𝐻𝑖)𝑃𝑟 (𝑝, 𝐻𝑖)
, (3.4)

where 𝑃𝑟 (𝐻𝑖) is the prior. Following Ref. [108], an iterative procedure will be used in which

the priors in the first iteration are assumed to be constants. The posterior distributions from this

initial run will be used as prior for the next iteration. This is repeated until the posteriors converge.
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The expected energy loss �̂� (𝑝, 𝐻𝑖) and measured resolution 𝜎(𝑝, 𝐻𝑖) are fitted empirically.

To do this a crude graphical cut is made to each PID line. The measured mean and standard

deviation of 𝑑𝐸/𝑑𝑥 inside the cut as a function of momentum will be fitted with ad-hoc functions

to represent �̂� (𝑝, 𝐻𝑖) and 𝜎(𝑝, 𝐻𝑖). Any functions that fit data good enough will work, and in this

case �̂� (𝑝, 𝐻𝑖) takes the form of a modified BBE,

�̂� (𝑝, 𝐻𝑖) =
𝐴𝑖 + 𝐵𝑖𝛽

𝛽2

[
ln

(
𝐶𝑖 +

(
𝑚

𝛽

)𝐷𝑖
)
− 𝛽𝐸𝑖 + 𝐹𝑖

]
. (3.5)

Here 𝛽 = 𝑝/
√
𝑝2 + 𝑚 is the velocity, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖, 𝐸𝑖 and 𝐹𝑖 are parameters to be fitted. The

reason for the BBE to be modified is that the measured 𝑑𝐸/𝑑𝑥 from S𝜋RIT is actually the truncated

mean energy loss instead of the true averaged energy loss. The truncation is needed to minimize

the effect of outliner energy loss data point caused by delta electrons [102]. The truncation skews

the distribution to the point where the original BBE is not a good enough fit. The 𝜎(𝑝, 𝐻𝑖) takes

the following form,

𝜎(𝑝, 𝐸𝑖) =
𝛼𝑖

𝑝𝛽𝑖
+ 𝛾𝑖, (3.6)

where 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are parameters to be fitted. The results fitted from 132Sn + 124Sn data are

shown in Fig. 3.20

The classification results for 132Sn + 124Sn is demonstrated in Fig. 3.21, where the left panel

shows 𝑑𝐸/𝑑𝑥 distributions within a narrow range of momentum and the right panel shows where

the range of momentum is on the PID plot. Histograms on the left panel are weighted distributions

of 𝑑𝐸/𝑑𝑥, with each track weighted by the probability of it being a particular particle type. For

instance, a track that is identified as 50% proton and 50% Deuteron is counted as 0.5 count in both

proton and Deuteron distributions. The tails of the distributions overlap with each other in a way

that make intuitive sense. When observables for light fragments are constructed in Chapter 4, only

tracks with 𝑃(𝐻𝑖 |𝑝, 𝐸) > 0.7 and 𝜎(𝑝, 𝐸𝑖) < 2.2 are counted. These conditions are chosen from

the analysis of systematic errors from PID selection, in which fragments observables are found to

not vary much within a range of 𝑃 and 𝜎 thresholds that center at 0.7 and 2.2, respectively [109].
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Figure 3.20: The fitted �̂� (𝑝, 𝐻𝑖) and 𝜎(𝑝, 𝐻𝑖). The red lines in the center of the red shaded regions
correspond to �̂� (𝑝, 𝐻𝑖) and the width of the shaded regions on each side the line correspond to
1𝜎(𝑝, 𝐻𝑖).
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Figure 3.21: Particle selection of Bayesian PID on a selected momentum range. Left: Distributions
of 𝑑𝐸/𝑑𝑋 , with each track weighted by the probability of it being a particular isotope. Right: PID
plot with a black vertical bar indicating where the momentum cut is set in the making of 𝑑𝐸/𝑑𝑋
distribution on the left.
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Special care must be taken in pion selection because pion PID lines are contaminated by electron

and positron PID lines. The Lepton PID lines are not described well by Eq. (3.5), so a different

fitting procedure is needed to estimate the amount of contamination for pions. The details on pion

selection are described in Ref. [102] and the threshold is set to 𝑃(𝐻𝑖 |𝑝, 𝐸) > 0.2. This is less

stringent than for light fragments because PID lines of pions are far away from the that of other

isotopes.

3.4.2 Frame transformation

Center of mass frame is the most convenient reference frame to understand nuclear dynamics. To

transform measured momentum from laboratory to center of mass frame, it is first rotated such

that the beam is traveling in the direction of 𝑧-axis in the rotated frame. BDC measures the angle

of incidence of beam particle for each event, and this information is used to properly rotate the

coordinate system. The 4-momentum vector, defined as P = (𝐸/𝑐, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧), is constructed for

each track in the rotated frame and is then boosted back to center of mass frame with Lorentz

transformation.

We need to know the mass of each fragment to construct the 4-momentum because 𝐸2 = 𝑚2𝑐4+
𝑝2𝑐2, where 𝑚 is the mass of the fragment and 𝑐 is the speed of light. During particle identification,

a track can be identified as multiple isotopes simultaneously with different probabilities. The mass

of the most probable isotope from particle identification is used as the fragment mass of the track

during frame transformation.

The initial beam energy from BigRIPS is inferred from Time-of-Flight (ToF) measurement. On

average, nuclear collision are assumed to occur in the middle of the target foil along the beam axis,

so the final beam energy for Lorentz transformation is the expected energy after the beam particle

traverses half the thickness of the target foil, calculated from LISE++ program [110].
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3.4.3 Efficiency unfolding

Particle yields are often underestimated due to inefficiencies of the detector. However, detection

efficiency can be accurately estimated with Monte Carlo (MC) embedding techniques, details of

which will be described later in Section 5.9.1. In this section it is sufficient to know that for a

simulated particle with a given initial momentum, MC embedding returns either nothing or the

reconstructed momentum. The probability of it returning nothing is equal to the probability of

such particles not recognized by the software and the reconstructed momentum should follow a

probability distribution that accurately reflects detector resolution.

The naive approach to correct for efficiency loss is simply to weigh each track by the inverse

of the fraction of each embedded track being recognized. However, efficiency depends strongly on

track momentum so it must be taken into account. To construct efficiency as a function of momentum

phase space, MC embedding calculation is repeated across a range of initial momentum. The phase

space can be divided into finite bins, with each bin populated by the number of detected tracks

over that of initial tracks. Such seemingly innocuous procedure, however, suffers from ambiguity

stemming from the fact that detected momentum is not identical to initial momentum given the

finite resolution in track fitting routine, so finding efficiency from a look-up table with detected

momentum may result in inaccuracies.

To demonstrate this effect, denote 𝑅𝑖 as the number of tracks with reconstructed momentum and

𝑇𝑖 as the number of tracks with true momentum inside the 𝑖th phase space bin. In other words, 𝑅𝑖

is the reconstructed momentum distribution and 𝑇𝑖 is the true momentum distribution. A fraction

of tracks with true momentum in bin 𝑖 will end up with reconstructed momentum in bin 𝑗 due

to finite resolution. Denote 𝑀𝑖, 𝑗 as the fraction of tracks that migrate from bin 𝑖 to 𝑗 after track

reconstruction such that,

𝑅𝑖 = 𝑇𝑖𝑀𝑖,𝑖 +
∑
𝑖≠ 𝑗

𝑇𝑗𝑀𝑗,𝑖

=
∑
∀ 𝑗

𝑇𝑗𝑀𝑗,𝑖 .

(3.7)

𝑅𝑖 is detected in the experiment and the goal of efficiency unfolding is to extract 𝑇𝑖 from it.
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Beware that some tracks are lost in reconstruction due to inefficiencies and track quality cut, so

it is expected that
∑

𝑖 𝑀𝑗,𝑖 ≤ 1. 𝑀𝑗,𝑖 can be calculated from MC embedding from the following

procedure: MC embedding is performed with 𝐶 amount of initial tracks in each momentum bin

such that,

𝑅embed
𝑖 =

∑
∀ 𝑗

𝑇embed
𝑗 𝑀𝑗,𝑖 = 𝐶

∑
∀ 𝑗

𝑀𝑗,𝑖, (3.8)

since 𝑇embed
𝑖 ≡ 𝐶∀𝑖. Note that the embedded tracks have to pass track quality conditions to be

counted towards 𝑅embed
𝑖 . Efficiency 𝐸𝑖 is defined as,

𝐸𝑖 =
𝑅embed
𝑖

𝑇embed
𝑖

=
∑
∀ 𝑗

𝑀𝑗,𝑖 . (3.9)

It is tempting to divide the number of experimentally reconstructed tracks by 𝐸𝑖 bin-by-bin

to recover the true momentum distribution, but such division does not always yield the correct

distribution. Denote 𝐸𝐶𝑖 (stands for efficiency corrected) as the result of division for bin 𝑖,

𝐸𝐶𝑖 =
𝑅𝑖

𝐸𝑖
=

∑
𝑗 𝑇𝑗𝑀𝑗,𝑖∑
𝑗 𝑀𝑗,𝑖

. (3.10)

There are only two ways where 𝐸𝐶𝑖 equals to 𝑇𝑖: 𝑀𝑖, 𝑗 = 𝐴𝑖𝛿𝑖, 𝑗 or 𝑇𝑖 is a constant. The former

corresponds to zero bin migration, in other words perfect momentum resolution, and the latter

corresponds to uniform particle distribution in momentum space. Neither is true in general, but

if bin migration is small enough, 𝐸𝐶𝑖 will be very close to 𝑇𝑖. Let 𝑀𝑖, 𝑗 = 𝐴𝑖, 𝑗 𝛿𝑖, 𝑗 + 𝜎𝑖, 𝑗 where
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𝜎0,0 = 0 and 𝜎𝑖, 𝑗 � 𝐴𝑖, 𝑗 , we have,

𝐸𝐶𝑖 =

∑
𝑗 𝑇𝑗 (𝐴𝑗,𝑖𝛿 𝑗 ,𝑖 + 𝜎𝑗,𝑖)∑
𝑗 (𝐴𝑗,𝑖𝛿 𝑗 ,𝑖 + 𝜎𝑗,𝑖)

=
𝐴𝑖,𝑖𝑇𝑖 +

∑
𝑗 𝜎𝑗,𝑖𝑇𝑗

𝐴𝑖,𝑖 +
∑

𝑗 𝜎𝑗,𝑖

= 𝐴−1
𝑖,𝑖 (𝐴𝑖,𝑖𝑇𝑖 +

∑
𝑗

𝜎𝑗,𝑖𝑇𝑗 )
(
1 +

∑
𝑗 𝜎𝑗,𝑖

𝐴𝑖,𝑖

)−1

=

(
𝑇𝑖 +

∑
𝑗 𝜎𝑗,𝑖𝑇𝑗

𝐴𝑖,𝑖

) (
1 −

∑
𝑗 𝜎𝑗,𝑖

𝐴𝑖,𝑖

)
+𝑂 (𝜎2

𝑗 ,𝑖)

= 𝑇𝑖 +
∑

𝑗 (𝑇𝑗 − 𝑇𝑖)𝜎𝑗,𝑖

𝐴𝑖,𝑖
+𝑂 (𝜎2

𝑗 ,𝑖)

= 𝑇𝑖 +𝑂 (𝜎𝑗,𝑖)

(3.11)

𝐸𝐶𝑖 ≈ 𝑇𝑖 to the first order of 𝜎, but the accuracy can be improved with an iterative procedure

where each embedded particles are weighted by 𝐸𝐶𝑖. This iterative procedure will be referred

to as unfolding and will be repeated until the efficiency corrected histogram converges. Let

𝜖𝑖 =
∑

𝑗 (𝑇𝑗 − 𝑇𝑖)𝜎𝑗,𝑖/𝐴𝑖,𝑖, the embedding tracks are weighted as follows,

𝑇
embed(2)
𝑖 = 𝑇

embed(1)
𝑖 𝐸𝐶

(1)
𝑖

= 𝐶 (𝑇𝑖 + 𝜖𝑖) +𝑂 (𝜎2),
(3.12)

The number in the parenthesis on superscript states the order of iteration. Following Eq. (3.8),

𝑅
embed(2)
𝑖 =

∑
∀ 𝑗

𝑇
embed(2)
𝑗 𝑀𝑗,𝑖

= 𝐶
∑
𝑗

(𝑇𝑗 + 𝜖 𝑗 ) (𝐴𝑗,𝑖𝛿 𝑗 ,𝑖 + 𝜎𝑗,𝑖) +𝑂 (𝜎2)

= 𝐶 (𝐴𝑖,𝑖𝑇𝑖 + 𝐴𝑖,𝑖𝜖𝑖 +
∑
𝑗

𝑇𝑗𝜎𝑗,𝑖) +𝑂 (𝜎2)

(3.13)
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The new efficiency is,

𝐸
(2)
𝑖 =

𝑅
embed(2)
𝑖

𝑇
embed(2)
𝑖

=
𝐶 (𝐴𝑖,𝑖𝑇𝑖 + 𝐴𝑖,𝑖𝜖𝑖 +

∑
𝑗 𝑇𝑗𝜎𝑗,𝑖) +𝑂 (𝜎2)

𝐶 (𝑇𝑖 + 𝜖𝑖) +𝑂 (𝜎2)

=
𝐴𝑖,𝑖 (𝐶 (𝑇𝑖 + 𝜖𝑖)) + 𝐶

∑
𝑗 𝑇𝑗𝜎𝑗,𝑖 +𝑂 (𝜎2)

𝐶 (𝑇𝑖 + 𝜖𝑖) +𝑂 (𝜎2)

= 𝐴𝑖,𝑖 +
∑

𝑗 𝑇𝑗𝜎𝑗,𝑖 +𝑂 (𝜎2)
𝑇𝑖 + 𝜖𝑖 +𝑂 (𝜎2) +𝑂 (𝜎2).

(3.14)

Make use of the fact that 𝜖𝑖 ∼ 𝑂 (𝜎), the efficiency becomes,

𝐸
(2)
𝑖 = 𝐴𝑖,𝑖 +

∑
𝑗 𝑇𝑗𝜎𝑗,𝑖 +𝑂 (𝜎2)
𝑇𝑖 +𝑂 (𝜎) +𝑂 (𝜎2)

= 𝐴𝑖,𝑖 +
∑

𝑗 𝑇𝑗𝜎𝑗,𝑖 +𝑂 (𝜎2)
𝑇𝑖

(1 −𝑂 (𝜎)) +𝑂 (𝜎2)

= 𝐴𝑖,𝑖 +
∑

𝑗 𝑇𝑗𝜎𝑗,𝑖

𝑇𝑖
+𝑂 (𝜎2).

(3.15)

The efficiency corrected histogram in the second iteration is,

𝐸𝐶
(2)
𝑖 =

∑
𝑗 𝑇𝑗 (𝐴𝑗,𝑖𝛿 𝑗 ,𝑖 + 𝜎𝑗,𝑖)

𝐴𝑖,𝑖 +
∑

𝑗 𝑇𝑗 𝜎𝑗,𝑖
𝑇𝑖

+𝑂 (𝜎2)

=
𝑇𝑖 (𝐴𝑖,𝑖 +

∑
𝑗 𝑇𝑗 𝜎𝑗,𝑖
𝑇𝑖

)

𝐴𝑖,𝑖 +
∑

𝑗 𝑇𝑗 𝜎𝑗,𝑖
𝑇𝑖

+𝑂 (𝜎2)

= 𝑇𝑖 +𝑂 (𝜎2)

(3.16)

The second iteration improves the accuracy by a factor of 𝜎. Eventually the procedure will

converge to a stable 𝐸𝐶𝑖. To prevent tracks with extremely small efficiency from blowing up

the histogram, tracks with the unfolded efficiency smaller than 0.15 will be discarded. The

efficiency is binned as 2-dimension distribution of 𝑝𝑇 vs. 𝑦0. This efficiency unfolding is used

for reconstruction of particle yields, rapidity and 𝑝𝑇 distribution but not for collective flow and

reaction plane determination. A different type of efficiency (azimuth efficiency) is used for reaction

and it will be discussed in Section 3.4.6.
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3.4.4 Track and event selection task

Tracks with poor detection quality must be removed for accurate results. One of the track quality

conditions used in the analysis is to remove tracks with number of clusters < 20 for pions and <

15 for other light fragments. Number of clusters of a track is defined as the sum of number of row

clusters and number of layer clusters. Row refers to the pad numbering along 𝑥-direction and layer

refers to pad numbering along 𝑧-direction. Number of layer clusters is the number of layers of pads

that registers hits for a track when its yaw angle, defined as the angle between the projected track

on 𝑥-𝑧 plane and 𝑧-axis, is less then 45◦ [7]. An illustration on how clusters are counted is provided

in Fig. 3.22. In this example, the track spans five layers in total but the last layer is not counted

because yaw of the track exceeds 45◦ beyond the fourth layer, therefore the number of layer clusters

is equal to 4. In similar fashion, number of row clusters is the number of row of pads that register

hits for a track when its yaw angle exceeds 45◦. In our example figure, number of row clusters is

equal to 3 and the total number of clusters is 4 + 3 = 7. The number of clusters are the same as

the number of points GENFIT used for curve fitting. Momentum resolution will be poor for tracks

with inadequate points to fit. The number of clusters threshold is imposed to filter out tracks with

unreliable momentum values.

The second condition is to remove tracks with distance to RAVE vertex > 20 mm for pions

and > 15 mm for all other light fragments. Distance to vertex is the closest distance between

reconstructed track and vertex when extrapolated back to the target, as illustrated in Fig. 3.23. If

the distance to vertex is too large, then either the track does not originate from the same collision as

other tracks or is badly fitted. Either way these tracks are not good enough to be counted towards

the final spectrum and are removed.

The third condition is to only accept tracks with−40◦ < 𝜙 < 20◦ (beam left) or 160◦ < 𝜙 < 220◦

(beam right), where 𝜙 is the particle azimuth in center of mass frame. The width of the S𝜋RIT

detector is greater compared to its height, so tracks that are emitted in the general upward or

downward direction escape the detection volume quicker than those emitted sideways and leaves

less hit points. After imposing the number of cluster cut, tracks that are emitted at 𝜙 ∼ ±90◦
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Figure 3.22: An not-to-scale illustration of how numbers of row and layer clusters are defined. The
yellow line corresponds to the track trajectory projected on 𝑥-𝑧 plane and the cells that are labelled
red are pads directly on top of the track.

Figure 3.23: Illustration of distance to vertex, taken from Ref. [7]. Tracks 1 and 2 are example
tracks with 𝑑1 and 𝑑2 being their corresponding distance to vertex.
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Figure 3.24: Distribution of 𝜙 against 𝜃 for protons with distance to vertex cut < 15 mm and number
of cluster cut > 15. Data is taken from 132Sn + 124Sn after gating on beam purity.

are mostly be cut away. Fig. 3.24 shows the distribution of 𝜙 vs 𝜃 for all protons with number of

clusters > 15. The cluster condition completely rejects all tracks near 𝜙 ∼ ±90◦ when 𝜃 > 40◦.

This phase-space cut-off boundary is not simple to calculate and the resultant geometric bias will

be difficult to correct for. Thus we decide to only accept tracks from 𝜙 regions that do not suffer

from such geometric efficiency problems.

The fraction of particles removed by the cut conditions must be accounted for if we want to

accurately count the yield of particles. The efficiency loss due to the number of clusters and distance

to vertex conditions can be accurately calculated through efficiency unfolding procedure discussed

in Sections 3.4.3. For the azimuth condition we can simply multiply the result by a constant factor

of ((220 − 160) + (20 + 40))/360 = 3 since the reaction should exhibit cylindrical symmetry.

The beam particles could react with nuclei in the counter gas or other materials the beam
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encounter as it travel through the beam line to the target. These events not originated from the

target have to be removed from the analysis. To ensure projectile reacts with the desired Tin

nucleons, cuts on vertex locations are made. A 𝑧-coordinate cut is applied to vertex fitted from

tracks to make sure the reaction does not originate up-stream or down-stream of the target foil.

Cuts in 𝑥- and 𝑦-coordinate are applied to BDC extrapolated vertex position to make sure the beam

does not hit the frame of the target.

All of these conditions are used when we reconstruct the yields, rapidity and 𝑝𝑇 distributions of

particles. For the determination of collective flow and reaction plane, the limits in azimuth ranges

are not applied and number of clusters threshold is lowered to > 7 for reasons that will be described

in Section 3.4.6.

3.4.5 Summary on cut conditions

Cut conditions described in the last three sub-sections are summarized in Table 3.1. The fraction

of tracks lost due to number of clusters, distance to vertex and detector inefficiencies should be

corrected by efficiency unfolding. The multiplicative factor of 3 due to azimuth range cuts will be

imposed after efficiency unfolding. Although Monte Carlo simulation is able to recreate the shape

of particle PID to a certain extent, it is not accurate enough to be used for calculating the amount

of tracks lost due to PID cuts. The performance of MC PID will be discussed in Section 5.9.2.

3.4.6 Reaction plane determination

Reaction plane is the plane that the beam axis and the displacement vector between target and

projectile span. Estimation of reaction plane azimuth (Φ) is needed in the determination of

collective flow, which was the focus of numerous previous studies [11, 111–113]. Flows are

expected to shed light into the properties of nuclear matter. Collective flow indicates the degree

of non-uniformity in azimuth distribution with respect to reaction plane. In this work, Q-vector

method [114, 115] is used to approximate reaction plane angle, which states that the azimuth of �𝑄
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Table 3.1: Cut conditions used in event and track selection for reconstruction of particle distribu-
tions.

Track conditions Light fragments Pions

Number of clusters > 15 > 20
Distance to vertex < 15 mm < 20 mm
PID probability > 0.7 > 0.2
PID 𝜎 > 2.2 Not imposed
Efficiency > 0.15
Azimuth range −40◦ < 𝜙 < 20◦ or 160◦ < 𝜙 < 220◦

Vertex conditions

System z(mm) BDC-x(mm) BDC-y(mm)
108Sn + 112Sn −14.8 ± 3.1 0.0 ± 2.5 0.0 ± 2.4
108Sn + 112Sn −14.8 ± 3.7 0.0 ± 3.0 0.0 ± 2.3
108Sn + 112Sn −14.3 ± 2.6 0.0 ± 2.5 0.0 ± 3.0
108Sn + 112Sn −14.8 ± 3.7 0.0 ± 2.8 0.0 ± 2.5

defined as,

�𝑄 =
∑

𝑤(𝑦𝑧) �𝑝𝑇 , (3.17)

is a good approximation to Φ. Here 𝑤 = 1 for 𝑦𝑧 > 0.4𝑦NN, 𝑤 = −1 for 𝑦𝑧 < −0.4𝑦NN and 𝑤 =

0 otherwise, where 𝑦NN is the relative rapidity of nucleons between beam and projectile. Fragments

with |𝑦 | < 0.4𝑦NN are not used as they do not contribute to reaction plane determination [114].

When applied to S𝜋RIT data, the number of clusters cut is relaxed to > 7 and no azimuth range cuts

are applied to minimize bias in azimuth acceptance. Q-vector method work best for detectors with

uniform azimuth acceptance, but given that S𝜋RIT TPC does not exhibit cylindrical symmetry, the

acceptance is non-uniform. Fragments emitted at some angles are less efficiently detected than

the others, leading to under-representation of particles in those angular ranges. There are multiple

ways to correct for such bias. Denote Φ𝑟 as the approximated reaction plane angle from Q-vector

method, we first weigh each track by the inverse of its empirical azimuth efficiency (when it is

larger than 0.05) according to the track’s 𝜃 and 𝜙 values in Q-vector calculation, then expand the

distribution of Φ𝑟 as a Fourier series and shifts reaction plane angles event-by-event in a way that
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makes the final distribution isotropic [116]. The second step is called flattening.

The azimuth efficiency, not to be confused with embedding efficiency, can be found by plotting

empirical azimuth vs. polar angle distribution as 2D histogram for each particle after beam rotation

in laboratory frame. It is normalized such that maximum height of azimuth distribution along every

polar angle bin is equal to one. The normalized distribution shows the relative azimuth efficiencies

for particles at a fixed polar angle. Azimuth efficiency for each track is the value of this distribution

at the corresponding azimuth and polar angle. To correct for azimuth efficiency, 𝑤(𝑦𝑧) of Eq. (3.17)

is multiplied by the inverse of azimuth efficiency in Q-vector calculation. To prevent tracks with

extraordinarily small efficiency from blowing up the calculation, only tracks with efficiency larger

than 0.05 are counted in the calculation. The threshold is set ad-hoc, but results from simulation

of detector response in Section 5.9 demonstrates that this threshold value allows us to accurately

reconstruct reaction plane angle.

The flattening after correcting for azimuth efficiency is achieved by first normalizing each

component of Q-vector to have zero mean and unit standard deviation,

�̂�𝑖 = (𝑄𝑖 − 〈𝑄𝑖〉)/𝜎𝑄𝑖
, (3.18)

where 𝑖 denotes the component of Q-vector which can be either 𝑥 or 𝑦. Define �̂𝑄 = 𝑄𝑥𝑥 +𝑄𝑦�̂�,

then the 𝑛th Fourier components of the azimuth distribution of �̂𝑄 is,

𝑎𝑛 = −2
𝑛
〈sin(𝑛𝜙( �̂𝑄))〉,

𝑏𝑛 =
2
𝑛
〈cos(𝑛𝜙( �̂𝑄))〉.

(3.19)

To correct for acceptance, reaction plane angles are shifted to erase the contributions of each

Fourier component by the following amount,

Φflat = 𝜙( �̂𝑄) +
∑
𝑛

[𝑎𝑛 cos(𝑛𝜙( �̂𝑄)) + 𝑏𝑛 sin(𝑛𝜙( �̂𝑄))] . (3.20)

The effect of reaction plane angle flattening is demonstrated in Fig. 3.20 where the Q-vector

azimuth distributions from 108Sn + 112Sn before and after azimuth efficiency correction and
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Figure 3.25: Distributions of reaction plane azimuth before (blue) and after (orange) acceptance
corrections. The selected events come from 108Sn + 112Sn.

flattening are plotted. Even though distribution for only one reaction system is shown, acceptance

corrections are verified to flatten the reaction plane distributions for all reaction systems in S𝜋RIT

experiment.

Although the flattened reaction plane angle Φflat provides a reasonable estimation of reaction

plane angle Φ, they are still not identical due to stochastic nature of nuclear reaction, particle

detection resolution and efficiency effects. Fortunately, as we will show in Section 4.5.4, flow

observables can be accurately determined from inaccurate reaction plane angle as long as reaction

plane resolution is given. It can be calculated by the sub-event method which quantifies the

resolution as 〈cos(𝑖(Φ −Φflat))〉 for 𝑖 = 1, 2, ....

In sub-event method, fragments in each event are grouped randomly into two disjoint sub-

events with equal multiplicity, which we denote as group 𝑎 and 𝑏. Denote Φ𝑎
flat and Φ𝑏

flat as the

reconstructed Q-vector reaction plane angle (after acceptance correction) for events in group 𝑎 and

𝑏 respectively and 𝜒𝑚 = 〈cos(Φ𝑎
flat − Φ𝑏

flat)〉/
√

2, then the relation between reaction plane angle
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and sub-event reaction plane angles can be approximated as,

〈cos(Φ −Φflat)〉 = 0.626657𝜒𝑚 − 0.09694𝜒3
𝑚 + 0.02754𝜒4

𝑚 − 0.002283𝜒5
𝑚,

〈cos(2(Φ −Φflat))〉 = 0.25𝜒2
𝑚 − 0.011414𝜒3

𝑚 − 0.034726𝜒4
𝑚 + 0.006815𝜒5

𝑚.

(3.21)

These equations are then solved numerically. For full derivation of sub-event method please

refers to Ref. [115].
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CHAPTER 4

TRANSPORT MODELS AND EXPERIMENTAL RESULTS

4.1 Introduction

The goal of the S𝜋RIT experiment is to study the properties of nuclear matter such that our

understanding of neutron star, which is composed mostly of neutron-rich nuclear matter, can be

improved. Experimental results will be compared to theoretical predictions to constrain nuclear

EoS parameters. Using the S𝜋RITROOT analysis framework, observables from spectra of pions

and light fragments can be reconstructed.

Theoretical predictions are made using transport models, a class of semi-classical model that

describes the dynamics of nuclear collisions from Fermi to relativistic energies. A review on the

different transport models can be found in Ref. [117].

In this chapter, a brief summary on a few of the most commonly used many body dynamical

transport models will be provided, followed by results from the S𝜋RIT experiment.

4.2 Transport model

The idea of transport model is to extend the classical Vlasov equation for one-body phase-

space distribution with a Pauli-blocked Boltzmann collision term. The resulting equation, called

Boltzmann-Uehling-Uhlenbeck (BUU) equation, is formulated as,

(
𝜕

𝜕𝑡
+ �∇𝑝𝜖 · �∇𝑟 − �∇𝑟𝜖 · �∇𝑝

)
𝑓𝑎 (�𝑟, �𝑝, 𝑡) = 𝐼coll

[
𝑓𝑎 (�𝑟, �𝑝, 𝑡),

𝑑𝜎med
𝑎𝑏

𝑑Ω

]
. (4.1)

In this equation, 𝑓𝑎 (�𝑟, �𝑝, 𝑡) is the one-body phase-space distribution for particle 𝑎, 𝜖 [ 𝑓𝑎] is

the single-particle energy function, 𝐼coll [ 𝑓𝑎, 𝑑𝜎med
𝑎𝑏

/𝑑Ω] is the two-body collision integral and

𝑑𝜎med
𝑎𝑏

/𝑑Ω represents all the in-medium nucleon-nucleon differential scattering cross sections

between particle 𝑎 and 𝑏. 𝜖 and in-medium cross sections are inputs that must be provided by the
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user. In particular, 𝜖 is governed by the mean-field potential which contains contributions from

nuclear EoS. The collision term for the collision 𝑝𝑎 + 𝑝𝑏 → 𝑝′𝑎 + 𝑝′
𝑏

is,

𝐼coll

[
𝑓𝑎 (�𝑟, �𝑝, 𝑡), 𝑑𝜎

med

𝑑Ω𝑎𝑏

]
=

∑
𝑏

𝑔𝑏

(2𝜋ℏ)3
∫

𝑑3𝑝𝑏𝑣𝑎𝑏
𝑑𝜎med

𝑎𝑏

𝑑Ω𝑏
[(1 − 𝑓𝑎) (1 − 𝑓𝑏) 𝑓 ′𝑎 𝑓 ′𝑏

− 𝑓𝑎 𝑓𝑏 (1 − 𝑓 ′𝑎) (1 − 𝑓 ′𝑏)],
(4.2)

where 𝑣𝑎𝑏 is the relative velocity between particle 𝑎 and 𝑏, 𝑔𝑏 is the spin degeneracy and the

summation over 𝑏 corresponds to summation over all neutrons and protons. The collision term is

solved by performing stochastic collisions of test particles. In each time step, the model first check

if two test particles are close enough to incur a collision and then check if the final state of the

collision is permitted by Pauli-exclusion principle.

There are two types of transport models, namely the quantum molecular dynamics (QMD)

models [118–126] and the stochastic extensions of Boltzmann-Langevin type [127–132]. They

mainly differ in how fluctuations and many-body correlations are introduced. Only QMD models

are described and used in this thesis due to their availability in our analysis group.

QMD models approximate the many-body wave-function as a product of multiple Gaussian

wave-packets with fixed width. The one-body Wigner function, which is approximately the phase

space density -distribution for the corresponding many-body wave-function, is,

𝑓 (�𝑟, �𝑝) =
𝐴∑
𝑖

𝑓𝑖 (�𝑟, �𝑝), with

𝑓𝑖 (�𝑟, �𝑝) =
(

ℏ
Δ𝑥Δ 𝑝

)3
exp

[
− (�𝑟 − �𝑅𝑖 (𝑡))2

2Δ𝑥2 − ( �𝑝 − �𝑃𝑖 (𝑡))2
2Δ 𝑝2

]
.

(4.3)

The centroid position �𝑅𝑖 (𝑡) and �𝑃𝑖 (𝑡) are treated as variational parameters. This summarizes

how QMD type models simulate nuclear dynamics, but the details in collision simulation and mean

field formulation differ from code to code. We will briefly describe improved QMD (ImQMD),

dcQMD and Ultra-relativistic QMD (UrQMD) in the next three subsections as these three models

are used in different parts of our analysis.
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4.2.1 ImQMD

ImQMD was developed at China Institute of Atomic Energy (CIAE) by the group of Prof. Zhuxia

Lia based on QMD code originally imported from Frankfurt in 1989. It was improved by multiple

theorists over the years, most notably by Yingxun Zhang in 2003 [126, 133–135] who incorporates

the Skyrme interactions into the model. Its mean field derives from Skyrme energy density

functional with explicit Skyrme-type momentum-dependent interaction [136]. Collision between

nucleons is only attempted when their transverse distance is less than
√
𝜎med/𝜋, where 𝜎med =

(1 − 𝜂𝜌/𝜌0)𝜎free and 𝜂 is a free parameter, and their longitudinal distance is less than 𝑣𝑖 𝑗 𝛾𝛿𝑡/2,

where 𝑣𝑖 𝑗 is the relative velocity, 𝛾 is the Lorentz factor and 𝛿𝑡 is the length each time step. This

model does not generate pions.

4.2.2 UrQMD

UrQMD was first developed in the mid-1990s at Frankfurt [137]. It was extended to include 50

different baryon species and 35 different meson species and is commonly used to study collisions

over vast energy ranges. Different versions of UrQMD use different mean field formulations for

the study of different topics in heavy-ion experiments [138–145]. The mean field of UrQMD

in sections 5.8 and 5.9.3 uses Skyrme type mean field with in-medium cross-section equals to

cross-section in free space [146].

4.2.3 dcQMD

dcQMD was adapted from TuQMD, which was first developed in the 90s in Tubingen, Ger-

many [147, 148]. TuQMD includes the degrees of freedom for a lot of particle species [149].

It was extended to dcQMD for the study of asymmetric part of nuclear EoS at a few hundred

MeV/u [150, 151]. The mean-field of dcQMD was formulated to introduce independent variations

of compressibility or slope parameters in EoS. dcQMD allows the isospin-dependent potential of

nucleon to be different from that of Δ (1232) which has a large impact on pion multiplicities [152].
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Therefore this flexibility makes dcQMD suitable for the comparison of pion observables. A colli-

sion is attempted when 𝜋𝑑2
min ≤ 𝜎, with 𝜎 being the scattering cross-section. A particular feature

of dcQMD is that it considers the total energy balance due to in-medium potential in a collision.

This condition shifts the production threshold based on differences between the initial and final

potential energy [153].

4.3 Coalescence

After transport model propagates nucleons to their final positions, clusterization (also called

coalescence) algorithm are normally used to group nucleons into light fragments such as, but not

limited to, Deuteron and Triton. It usually involves combining neutrons and protons with small

relative distance and speed into isotopes. This procedure is unreliable as the physical fragment

production mechanism involves many body correlations that are not well understood [154, 155].

Such algorithms often cannot predict the binding energy of most particles especially 4He.

In some models, clusterization algorithms are handled better and yield more consistent results

with data. Most prominently, the Asymmetrized Molecular Dynamic (AMD) model propagate

nucleons and calculate cluster formation in one unified step. Its predictions on light fragment yield

was shown to agree with data to a satisfactory extent [154, 156]. It is not used in this thesis due

to the limited availability of AMD code. All the QMD models used for comparison with data in

this manuscript, however, use the less reliable clusterization process and therefore energy spectra

of light fragments cannot be compared directly.

To overcome this difficulty, observables must be chosen carefully to minimize their sensitivity to

clusterization. To be more precise, we want to construct observables whose values depend weakly

on the clusterization process. This can be achieved by one of the following ways:

1. Consider particles that do not form elements or isotopes.

2. Sum up protons from all light fragments to reconstruct the primary nucleon distribution

before clusterization.
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3. Take ratio of the same observable between different reaction systems. Such ratios have been

shown to cancel systematic errors from clusterization [157, 158].

Various observables, such as isoscaling rato [157, 158], have been constructed with these

methods. In this chapter, these observables will be described and their measured values from

S𝜋RIT experiment will be shown.

4.4 Geometric coverage and impact parameter selection

S𝜋RIT TPC has limited geometric coverage such that particles with very negative rapidity in

center of mass frame are not being detected with good efficiency. Therefore for most of the results

from 108Sn + 112Sn and 132Sn + 124Sn reactions, only particles at 𝑝𝑧 > 0 in center of mass frame

will be used. Results from particles with slightly negative rapidity are also plotted in Section 4.6.4

for the two reactions, but spectra at even lower rapidity are not usable. As for 112Sn + 124Sn

reaction, the result can be combined with data from 124Sn + 112Sn to form a complete 4𝜋 solid

angle coverage, so observables values for this particular reaction do not need to be conditioned on

𝑝𝑧 > 0.

With the exception of Section 4.5.3, impact parameters of all observables in this chapter are

selected with gates on charged multiplicity. Impact parameter cannot be measured directly, but can

be inferred from other indirect observables. Traditionally, the inference is done with the help of an

observable that depends on impact parameter monotonically. Examples of such observables include

total charged multiplicity and ratio of total transverse kinetic energy to longitudinal kinetic energy

(ERAT) [30]. With the assumption of geometric cross-section 𝑑𝜎 = 2𝜋𝑟𝑑𝑟, impact parameter can

be calculated from the cumulative distribution of such observable using the following formula [2],

𝑏 = 𝑏max

√
𝑁𝑂≥𝑂𝐶

𝑁total
, (4.4)

where𝑂𝐶 is the current observable value, 𝑁𝑂≥𝑂𝐶
is number of observed events with observable

value ≥ 𝑂𝐶 , 𝑁total is the total number of observed events and 𝑏max is the maximum impact

parameter. 𝑏max is calculated from the empirical total reaction cross-section and is measured to
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be 7.13 fm for 108Sn + 112Sn, 7.31 fm for 112Sn + 124Sn and 7.52 fm for 132Sn + 124Sn [2]. This

method is reliable for impact parameter not too close to the sharp cut-off at 𝑏max. Charged particles

multiplicity will be used as 𝑂𝐶 in the following sections.

Section 4.5.3 uses a Machine learning algorithm to extract pion results reliably at impact

parameter near 𝑏max. This algorithms will be reviewed in Section 5.9.3.

4.5 Pion Observables

Since pions do not form isotopes with other particles, their yields should be independent of

the clusterization process. Furthermore, pion observables are predicted to be sensitive to nuclear

EoS at high density due to pion’s unique production mechanism: In nucleon-nucleon collisions,

some interactions are energetic enough to form excited Δ (1232) baryon resonance (𝑁𝑁 ↔ 𝑁Δ)

which then promptly decay into pions and nucleons. The high production threshold of Δ resonance

(1232 MeV/c2) at the early stage of the reaction ensures that pions originate from high density

region. S𝜋RIT data on pion momentum spectra in central collisions have been published [33, 152]

and their results will be briefly summarized here. It will be followed by data on other new pion

observables.

4.5.1 Pion yield of central events

The most straight-forward pion observable to extract experimentally is their total yields. Although

they are measured reliably in S𝜋RIT experiment, comparison with theory is hard to carry out

because a lot of different physical processes must be taken into account for the predicted yields

to be accurate. Some of these processes are not well understood which introduce additional

uncertainties in quantifying the relation between pion yields and symmetry energy. These issues

can be mitigated by using the ratio of 𝑌 (𝜋−) to 𝑌 (𝜋+) instead. The division cancels out some

contributions from physical processes that act on both 𝜋− and 𝜋+ in similar ways while magnifying

the symmetry energy effects which act on 𝜋− and 𝜋+ with opposite sign.

The study of pion yields was the focus of Ref. [152]. The S𝜋RIT experiment measured the pion
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yield ratios for 108Sn + 112Sn, 112Sn + 124Sn and 132Sn + 124Sn systems. The total neutron to

proton ratio 𝑁/𝑍 of these three systems are 1.36, 1.2 and 1.56 respectively. Only pions with 𝑝𝑧 ≥ 0

in center of mass frame are measured (see Section 4.4). The effects of incomplete coverage should

be minimized when ratios between yields of 𝜋− and 𝜋+ are taken. To impose centrality gate, only

events with multiplicity larger than 50 are considered. This corresponds to an impact parameter

cut of 𝑏 < 3 fm.

With a Δ resonance model for pion production, one would expect that 𝑌 (𝜋−)/𝑌 (𝜋+) follows a

(𝑁/𝑍)2 dependence [31, 159]. However, the measured pion ratios in Fig. 4.1 (yellow cross with

circle marker) follows 𝑁/𝑍 with a best fitted power index of 3.4 instead. The radius of the circle

in the center of each cross is the uncertainty of yield measurement. The discrepancy indicates the

presence of dynamical factors beyond a simple Δ resonance model. If transverse momentum cut

of 𝑝𝑇 > 180 MeV/c is imposed, the result (blue crosses with circle marker) still shows a (𝑁/𝑍)3.4

dependence instead of the expected (𝑁/𝑍)2. The effects unexplained by Δ resonance model persist

even for high momentum pions and may suggest the ratios exhibit greater effects from symmetry

energy.

4.5.2 Pion ratio spectra of central events

The analysis of pions momentum spectra in central collisions is the focus of Ref. [33]. Their results

will be briefly summarized in this section.

dcQMD model predictions will be compared to the measured pion spectrum to constrain nuclear

EoS. As described in Section 4.2.3, dcQMD is suitable for describing pion emissions due to its

flexibility in adjusting Δ potential independently from that of nucleons. This is essential as it was

found that if Δ potential is set equal to that of nucleons, the predicted yields of 𝜋− and 𝜋+ will be

incorrect [152, 160]. The potential depth at saturation density is adjusted until dcQMD reproduces

experimental pion yields and mean kinetic energies [160].

Only 𝐿 and the scaled difference between neutron and proton effective mass Δ𝑚∗
𝑛𝑝 = [𝑚∗

𝑛 −
𝑚∗

𝑝]/(𝑚𝑁𝛿) are varied to simplify the analysis. Other EoS parameters are fixed to the best extracted
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Figure 4.1: Yield of 𝜋− over that of 𝜋+ in 𝑏 < 3 fm events for pions with 𝑝𝑧 > 0 in center of mass
frame, plotted as a function of 𝑁/𝑍 . The yellow crosses show the yield ratios with no transverse
momentum cut while the blue crosses shows that with 𝑝𝑇 > 180 MeV/c. The radius of circle inside
each cross represents the statistical uncertainty of the ratio. The dashed blue line and dotted blue
line corresponds to best fitted power functions of 𝑁/𝑍 for 𝑝𝑇 > 0 and 𝑝𝑇 > 180 MeV/c pion ratios
respectively.

values from other studies. Following results in Ref. [161], 𝐾sat is set to 250 MeV and 𝑄sat is set

to −350 MeV. Following results from nuclear mass and radius measurements [34, 40], 𝐿 will be

correlated with 𝐾sym via 𝐾sym = −488 + 6.728𝐿(MeV) and 𝑆(𝜌 = 0.1 fm−3) is fixed to 25.5 MeV.

When the measured 𝜋+ and 𝜋− transverse momentum (𝑝𝑇 ) spectra for 108Sn + 112Sn and 132Sn

+ 124Sn reactions with impact parameter 𝑏 < 3 fm are compared to dcQMD predictions in Fig. 4.2,

it is found that pion potential is required to describe the spectra accurately. Only pions with 𝑝𝑧 > 0

in center of mass frame are counted (see Section 4.4). The black markers correspond to measured

spectra and both the blue and red lines correspond to dcQMD calculations with 𝐿 = 80 MeV,

Δ𝑚∗
𝑛𝑝 = 0 and optimized Δ potential depth. The difference between the two curves is that pion

optical potential is used on the red curves but not the blue curves. Without pion potentials, the

predictions under estimate production of low momentum pions. At high momentum, the two curves

are nearly the same.
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Figure 4.2: Pion spectra for 𝑏 < 3 fm events. Red curves show dcQMD predictions with best fitted
pion potential. The blue curves are identical except that no pion potential is used.

Next we focus on the single ratio spectrum 𝑆𝑅(𝜋−/𝜋+) = [𝑑𝑁 (𝜋−)/𝑑𝑝𝑇 ]/[𝑑𝑁 (𝜋+)/𝑑𝑝𝑇 ].
This ratio magnifies symmetry energy effects as the contribution of symmetry energy to isovector

mean field potential is opposite in sign for 𝜋− and 𝜋+, similar to our rationale for taking ratios of

total yields in the previous section. We use dcQMD to predict single ratios at 12 different parameter

sets in the 𝐿 vs. Δ𝑚∗
𝑛𝑝 space, forming a regular lattice. The value of 𝐿 in the lattice is either 15,

60, 106 or 151 MeV and Δ𝑚∗
𝑛𝑝/𝛿 is either -0.33, 0 or 0.33.

A few selected calculations and the measured single ratios are shown in Fig. 4.3. The
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Figure 4.3: Single pion spectral ratios for 132Sn + 124Sn (left) and 108Sn + 112Sn (right) reactions
with four selected dcQMD predictions overlaid. See text for details.

(𝐿,Δ𝑚∗
𝑛𝑝) values of solid blue line is (60,−0.33𝛿), dashed blue line is (60, 0.33𝛿), solid red

line is (151,−0.33𝛿) and dashed red line is (151, 0.33𝛿). Coulomb effects dominate the low

𝑝𝑇 region which cause a steep rise in measured ratios at 𝑝𝑇 < 200 MeV/c. All calculations at

𝑝𝑇 < 200 MeV/c disagree with data, which could be caused by inaccuracies in the simulation of

Coulomb interactions or pion optical potential above saturation density. At 𝑝𝑇 > 200 MeV, the

Coulomb and pion potential effects diminish and the ratios should be good probes to the symmetry

energy effect.

The predicted single ratios at 𝑝𝑇 > 200 MeV/c are interpolated with 2D cubic splines over

(𝐿,Δ𝑚∗
𝑛𝑝) space. The interpolated predictions are compared to experimental measurements

through a chi-square analysis. The resultant multivariate constraint on 𝐿 and Δ𝑚∗
𝑛𝑝 is shown

in Fig. 4.4 where the green shaded region is the 1𝜎 confidence interval and the area enclosed by

the two blue dashed curve is the 2𝜎 confidence interval. Without any constraints on the effective

mass, the best fitted value is 𝐿 = 79.9 ± 37.6 MeV. The correlation between Δ𝑚∗
𝑛𝑝 and 𝐿 suggests

that tighter constraint on 𝐿 can be made if Δ𝑚∗
𝑛𝑝 is constrained better as shown in Chapter 6.
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Figure 4.4: Correlation constraint between 𝐿 and 𝛿𝑚∗
𝑛𝑝/𝛿, extracted from pion single ratio at

𝑝𝑇 > 200 MeV/c in both the neutron deficient 108Sn + 112Sn and the neutron rich 132Sn + 124Sn
systems. The light blue shaded region corresponds to 68% confidence interval while the dashed
blue lines denote the contours of 95% confidence interval.

4.5.3 Pion yield dependence on impact parameter

Using machine learning algorithm described later in Section 5.9.3, events are separated into impact

parameter bins from 0 to 10 fm with bin size of 1 fm. The pion yield is plotted against impact

parameter for 132Sn + 124Sn and 108Sn + 112Sn systems in Fig. 4.5. Only pions with 𝑝𝑧 > 0 in

center of mass frame are counted (see Section 4.4). The pion yield decreases with increasing impact

parameter where the overlapping zone between projectile and target (also known as the participant

zone) decreases. The neutron rich system of 132Sn + 124Sn generates the largest difference between

𝜋− and 𝜋+ yields. While 𝜋+ yields is nearly the same for both systems, the 𝜋− yield is a near factor

of 2 larger for the neutron rich systems.

The predicted pion yield may suffers from systematic errors due to incomplete description of

nuclear dynamics. To minimize such effect, ratio of yields (𝜋−/𝜋+) can be used to cancel out the

systematic errors. To further minimize the errors, the double ratio of 𝜋−/𝜋+ of 132Sn + 124Sn over
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(a) (b)

Figure 4.5: Impact parameter dependence of pion yield for (Left) 108Sn + 112Sn and (Right) 132Sn
+ 124Sn.

(a) (b)

Figure 4.6: (a): Single ratios of 𝜋−/𝜋+ as a function of impact parameter for 132Sn + 124Sn (orange
circles) and 108Sn + 112Sn (blue circles) reactions. (b): Double ratio of 𝜋−/𝜋+ from 132Sn + 124Sn
over 108Sn + 112Sn as a function of impact parameter.

that of 108Sn + 112Sn can be used for comparison with models.

These single and double ratios are shown in Fig. 4.6. It is interesting to note that the double

ratio is almost constant across all impact parameters.

As described in the previous sections, pions with high transverse momentum provide a clearer

signal to symmetry energy as other undesirable effects diminish such as Coulomb. The analysis is

repeated, but this time only pions with 𝑝𝑇 > 180 MeV/c are counted towards particle yields. The
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(a) (b)

Figure 4.7: Same as Fig. 4.5 except only pions with 𝑝𝑇 > 180 MeV/c are counted.

(a) (b)

Figure 4.8: Same as Fig. 4.6 except only pions with 𝑝𝑇 > 180 MeV/c are counted.

results are shown in Figs. 4.7 and 4.8. They are identical to Figs. 4.5 and 4.6 respectively except

with 𝑝𝑇 condition imposed. Within statistical errors, the impact parameter dependence of single

and double ratio is still nearly flat, and the double ratio in the high 𝑝𝑇 region is slightly higher than

that without 𝑝𝑇 cut. This suggests that the shape of the yield or ratio spectra rather than the ratios

are more sensitive to the symmetry energy.
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4.5.4 Pion directed flow

Collective flow in nuclear collisions have been the focus of numerous studies [11, 111–113] and

was demonstrated to be a sensitive probe for nuclear EoS. It is quantified as the Fourier coefficients

of the fragments’ azimuthal distribution with respect to reaction plane azimuth Φ [115],

𝑑𝑁

𝑑 (𝜙 −Φ) ∝ 1 + 2𝑣1 cos(𝜙 −Φ) + 2𝑣2 cos(2(𝜙 −Φ)) + ... (4.5)

Here 𝜙 is the fragment azimuths, 𝑣1 is called the directed flow and 𝑣2 is called the elliptical

flow. Azimuthal distribution of nuclear fragment is not isotropic because in mid-central collisions,

emissions near reaction plane are blocked by spectator nucleons. Nucleons outside of the overlap-

ping region between projectile and target nucleus along the beam line are called spectator nucleons

and those inside are called participant nucleons, first illustrated in Fig. 1.1. If the mean field

is highly repulsive, participant nucleons experience higher pressure in the collision which leads

to early emission. The spectator nucleons do not have time to leave and blocks the emission of

particles near the reaction plane azimuth, leading to stronger flow. Vice versa when mean field is

less repulsive [11].

The observed directed and elliptical flows are calculated as follows,

𝑣obs
1 = 〈cos(𝜙 −Φflat)〉

𝑣obs
2 = 〈cos(2(𝜙 −Φflat))〉

(4.6)

Only particles with −45◦ < 𝜙 < 45◦ are being counted since geometric acceptance of S𝜋RIT

TPC for particles that move in the general direction of beam left (𝜙 ∼ 0◦) has the most optimal

geometric acceptance. The observed value 𝑣obs
𝑖 is smaller than the true 𝑣𝑖 due to non-zero resolution

in the determination of reaction plane by Q-vector. Fortunately, 𝑣𝑖 can be reconstructed using

resolution information from sub-event method by the following formula,

𝑣𝑖 = 𝑣obs
𝑖 /〈cos(𝑖(Φ −Φflat))〉. (4.7)
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Figure 4.9: 𝑣1 of 𝜋+ and 𝜋− as a function of rapidity 𝑦0 for 108Sn + 112Sn (left) at 〈𝑏〉 = 5.2 fm
and 132Sn + 124Sn (right) reactions at 〈𝑏〉 = 5.1 fm.

It is customary to plot observables as a function of normalized rapidity 𝑦0 = 𝑦CM/𝑦NN. Here

𝑦𝐶𝑀 = 0.5 ln((𝐸 + 𝑝𝑧)/(𝐸 − 𝑝𝑧)) is the center-of-mass rapidity for fragments in consideration and

𝑦NN is the relative rapidity of nucleons between projectile and target. In fixed target experiment

like S𝜋RIT, target is stationary in laboratory frame so the relative nucleon rapidity is simply half

of beam rapidity in laboratory frame, 𝑦NN = 0.5𝑦Beam Lab.

Fig. 4.9 shows pion directed flow (𝑣1) from S𝜋RIT experiment for 108Sn + 112Sn and 132Sn +
124Sn reactions at mean impact parameter of 5.1 fm (28 < 𝑀 ≤ 49) and 5.2 fm (31 < 𝑀 ≤ 49)

respectively. The flow of 𝜋− is positive while that of 𝜋+ is negative with larger magnitude. Such

characteristics are not reproduced by current transport models. The directed flow of pion is expected

to be sensitive to the pion potential so further studies are warranted. There are not enough statistics

to extract 𝑣2 and higher order terms with satisfactory accuracy.

4.6 Light fragments observables

4.6.1 Coalescence invariant proton spectrum

For most transport models, spectra of individual light fragments cannot be compared to model.

However, when all proton contributions from light fragments are summed up, it should reproduce
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the primary proton distribution before the clusterization process. Neutron-to-proton spectrum ratio

constructed this way has been successfully used to constraint nuclear EoS in previous experi-

ment [158]. By summing the rapidity distributions of light fragments, we get the coalescence

invariant proton spectrum (CIP). In the S𝜋RIT experiment, protons from light fragments up to 4He

are summed,

𝑌CIP = 𝑌p + 𝑌d + 𝑌t + 2𝑌3He + 2𝑌4He. (4.8)

The scaling factor of 2 in front of Helium isotopes reflects the fact that Helium consists of two

protons. Isotopes heavier than 4He are not counted since their yields are orders of magnitude lower.

Furthermore, fragments emitted with very negative rapidity are not measured (see Section 4.4).

This is problematic as we need to know how many nucleons are recovered in the summation. It is

imperative that most protons are being counted in the CIP for such reconstruction of initial proton

distribution to be accurate. As a result, the full CIP spectrum can only be reconstructed for 112Sn

+ 124Sn system as we have complete geometric coverage for this reaction (see Section 4.4).

Fig. 4.10 shows the complete CIP of 112Sn + 124Sn at 〈𝑏〉 = 1.0 fm. The impact parameter

selection is done with multiplicity cut of 𝑀 > 55. 93% of all the protons in the reaction are

accounted for.

4.6.2 Stopping

Stopping refers to the degree of equilibrium between target and projectile and is sensitive to

the dynamics of the reactions such as the in-medium nucleon-nucleon cross-sections used in

transport models. The observable VarXZ is predicted by transport models to be sensitive to the

transparency, or stopping, in heavy-ion collisions [32]. This observable allows us to quantify the

deviation of reality from a completely stopped scenario, an assumption that were used previously

in hydrodynamic models [32]. It is also useful in understanding the nuclear shear viscosity [162].

Following the convention of Ref. [32], we define VarX and VarZ as the variance of particle

rapidity distributions in 𝑥-direction (transverse direction) and 𝑧-direction (longitudinal direction)
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Figure 4.10: Coalescence invariant proton rapidity spectrum of 112Sn + 124Sn at 〈𝑏〉 = 1.0 fm.

respectively, then VarXZ = VarX/VarZ. Note that the 𝑥-axis in VarX is an arbitrary laboratory

axis and not defined with respect to reaction plane. If the target and projectile are completely

equilibrated in the collision, the information on beam axis is lost and we expect the variance in 𝑥-

or 𝑧-directions to be identical, thus VarXZ = 1. On the other hand, if target and projectile do not

interact at all, which is the case for complete transparency, there is no collision and VarXZ should

be 0.

Only VarXZ for 112Sn + 124Sn and 108Sn + 112Sn reactions are constructed. We have complete

coverage for 112Sn + 124Sn and even-though there is no data for 108Sn + 112Sn at very negative

rapidity (see Section 4.4), particle distributions are expected to be approximately symmetric around

𝑦0 = 0 as the mass number of target and projectile are similar. The 𝑦0 < 0 portion of the rapidity

distribution is approximated as a mirror image of 𝑦0 > 0 part of the distribution. VarXZ from
132Sn + 124Sn is not calculated as the mass difference between target and projectile is too large for

the mirror image approximation to hold. Fig. 4.11 shows VarXZ of proton, Deuteron and Triton
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Figure 4.11: Left: VarXZ values for proton, Deuteron and Triton particles for 108Sn + 112Sn at
〈𝑏〉 = 1.1 fm. Right: VarXZ for 112Sn + 124Sn at 〈𝑏〉 = 1.0 fm.

for 108Sn + 112Sn reaction with centrality gate of 〈𝑏〉 = 1.1 fm (𝑀 > 55) and 112Sn + 124Sn at

〈𝑏〉 = 1.0 fm (𝑀 > 55). VarXZ decreases with increasing atomic mass on hydrogen isotopes,

which is consistent with 197Au + 197Au results from FOPI [32] and termed this phenomena as

stopping hierarchy.

4.6.3 Isospin Tracing

Global equilibrium is not reached in central heavy-ion collision. These non-equilibrium effects are

expected to be influenced by a myriad of processes, such as in-medium effects and deflections in

momentum-dependent mean fields. To quantify the extent of non-equilibrium, Isospin Tracing was

proposed in Ref. [163] to constrain the magnitude of in-medium cross-section with data from the

FOPI experiment. In this section, the construction of Isospin Tracing will be described and the

measured values from S𝜋RIT experiment will be presented.

Isospin Tracing 𝑅𝑥 is a meta-observable that is defined with respect to an observable 𝑥 as
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follows:

𝑅𝑥 =
2𝑥𝐴𝐵 − 𝑥𝐴 − 𝑥𝐵

𝑥𝐴 − 𝑥𝐵
. (4.9)

In this equation, 𝑥𝐴𝐵, 𝑥𝐴 and 𝑥𝐵 are the observable values of 𝑥 for 𝐴 + 𝐵, 𝐴 + 𝐴 and 𝐵 + 𝐵

reactions, respectively. 𝑅𝑥 takes the value of +1 if 𝐴+𝐵 behaves like 𝐴+ 𝐴 and −1 if it behaves like

𝐵+𝐵. If global equilibrium is reached, it should take the value of 0 everywhere in the phase-space.

𝑅𝑥 quantifies how well the target and projectile are “mixed".

In the case of Ref. [163], 𝐴 = Ru and 𝐵 = Zr. 𝑅𝑥 is tested with 𝑥 being either Triton to

Helium-3 ratio (t/3He) or coalescence-invariant proton spectrum (𝑍). 𝑅t/3He and 𝑅𝑍 both increase

monotonically as a function of impact parameter 𝑏. This trend agrees with the general belief

that reactions are more equilibrated in central than peripheral collisions. Furthermore, when a

centrality gate of 𝑏 ≤ 1.3 fm is imposed, 𝑅𝑍 is observed to increase with normalized rapidity

𝑦0 = 𝑦/𝑦NN, with 𝑅𝑍 = 0 at 𝑦0 = 0. It indicates that equilibrium is reached at mid-rapidity, but

not so for fragments with high rapidity. Transport model calculations showed that the slope of 𝑅𝑍

as a function of 𝑦0 in central events is sensitive to in-medium cross-section [163].

4.6.3.1 Adapting Isospin Tracing for S𝜋RIT experiment

Isospin tracing will only be calculated for 112Sn + 124Sn as it is the only reaction with complete

geometric coverage (see Section 4.4). In this section, 𝑥 in Eq. (4.9) is chosen to be coalescence-

invariant proton spectrum. It is tempting to repeat the analysis of Ref. [163] simply by substituting

𝐴 with 112Sn and 𝐵 with 124Sn, but it cannot be done due to the absence of data for symmetric

reactions.

The calculation of 𝑅𝑍 requires data for 112Sn +112 Sn and 124Sn +124 Sn reactions, which are

not performed in the S𝜋RIT experiment. Fortunately these distributions can be approximated by

linear combinations of distributions for reaction systems performed in the experiment. Denote 𝑍𝐴

as CIP for 𝐴 + 𝐴 reaction and 𝑍𝐴𝐵 as CIP for 𝐴 + 𝐵 reaction. To begin with, the distribution

𝑍
112Sn + 𝑍

124Sn can be approximated as 𝑍
112Sn124Sn + 𝑍

112Sn124Sn. The two distributions are
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mirror images of each other along 𝑦0 = 0. The heuristic reason for the approximation is the

fact that the total target mass and total projectile mass of 𝑍
112Sn + 𝑍

124Sn are equal to that of

𝑍
112Sn124Sn + 𝑍

112Sn124Sn.

This takes care of the second and the third term on the numerator of Eq. (4.9). With data

for 132Sn +124 Sn reaction, the terms on the denominator can also be approximated. Using the

mass summing heuristic, 0.5 ∗ (𝑍132Sn124Sn + 𝑍
112Sn124Sn) ≈ 𝑍

124Sn since the average projectile

mass of L.H.S. = 0.5 ∗ (132 + 112) = 122, which is close to the desired projectile mass of 124.

These approximated distributions will be referred to as proxy, as opposed to the real distributions

calculated with data from the symmetric systems. The accuracy of proxy will be verified with

transport model.

Lastly we scaled the amplitude of each distribution by the inverse of total system mass to

eliminate any effect caused by mass differences between the symmetric and mixed systems. This

step was not needed in Ref. [163] because their target and projectile are chosen to be of the same

mass and the scaling amplitude can be factored out.

Using dcQMD [160], proxies and real distributions are compared in Fig. 4.12. These distribu-

tions are generated at 𝑏 = 1 fm. From left to right, the in-medium cross-section is increased from

0.6𝜎free to 𝜎free. The distributions become flatter as 𝜎 increases. This is expected as increasing

cross-section should push the reaction closer to equilibrium. For the two graphs on the bottom,

only fragments with transverse momentum per nucleon 𝑝𝑇/𝐴 > 300 MeV/c are counted in 𝑅𝑧.

The slope of 𝑅𝑧 at mid-rapidity increases with 𝑝𝑇/𝐴 threshold, which reflects an enhancement of

transparency for high momentum fragments. 𝑅𝑍 from proxies in all four cases are very close to

those from real distributions when |𝑦0 | < 1.

Proxies 𝑅𝑧 from the S𝜋RIT experiment are shown in Fig. 4.13. As expected, the slope of

𝑅𝑧 increases with the 𝑝𝑇/𝐴 threshold. When 𝑝𝑇/𝐴 cut is absent, data disagrees with dcQMD

predictions regardless of in-medium cross-section but when 𝑝𝑇/𝐴 > 300 MeV/c is imposed, data

agrees with predictions for 𝜎 = 0.6𝜎free better that for 𝜎 = 𝜎free. This demonstrates the momentum

dependence of in-medium cross-section. By varying the 𝑝𝑇/𝐴 slices, it may be possible to constrain
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Figure 4.12: Isospin tracing from dcQMD with different parameters. Top left: 𝑝𝑇/𝐴 > 0 MeV/c
and 𝜎 = 0.6𝜎free. Top right: 𝑝𝑇/𝐴 > 0 MeV/c and 𝜎 = 𝜎free. Bottom left: 𝑝𝑇/𝐴 > 300 MeV/c
and 𝜎 = 0.6𝜎free. Bottom right: 𝑝𝑇/𝐴 > 300 MeV/c and 𝜎 = 𝜎free.

this dependence in the future.

In summary, we have demonstrated the viability of using Isospin Tracing on S𝜋RIT data. Using

proxies, 𝑅𝑧 can be constructed despite the absence of experimental data for symmetric systems.

A comparison between dcQMD predictions and experimental data reveals a possible momentum

dependence of in-medium cross-section. Future studies are warranted to construct a comprehensive

constraint on the in-medium effects.

4.6.4 Directed and elliptical flow

Fig. 4.14 shows the direct and elliptical flows for 108Sn + 112Sn and 132Sn + 124Sn reactions at

mean impact parameter of 5.1 fm (28 < 𝑀 ≤ 49) and 5.2 fm (31 < 𝑀 ≤ 49) respectively. The

methods used to determine collective flows of light fragments are identical to that of pions described

in Section 4.5.4. Only 𝑦0 > −0.5 are plotted due to limitations of detector acceptance. Figs. 4.14c
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Figure 4.13: Isospin tracing from S𝜋RIT experiment at 〈𝑏〉 = 1 fm. On the left no 𝑝𝑇/𝐴 cut is
imposed and on the right 𝑝𝑇/𝐴 > 300 MeV/c is imposed. The legend on the lower left hand corner
on the left plot is also applicable to the right plot.

and 4.14d show 𝑣1 as a function of 𝑝𝑇/𝐴 and are both gated on 0.2 < 𝑦0 < 0.8. The rapidity cut is

imposed to increase sensitivity as it is observed that 𝑣1 ∼ 0 when 𝑦0 ∼ 0. Finally 𝑣2 as a function

of 𝑦0 for the two systems are shown in Figs. 4.14e and 4.14f.

Direct and elliptical flows of light fragments are also influenced by the coalescence process.

Similar to the construction of coalescence invariant proton spectrum, the results can be made

less dependent on coalescence by summing proton contributions from all light fragments. The

Coalescence invariant flow (C.I. flow) distributions are constructed by taking weighted average of

cosines in Eq. (4.6) for all Hydrogen and Helium isotopes, with Helium isotopes weighted twice

as much as hydrogen isotopes. Fig. 4.15 shows C.I. flow for 108Sn + 112Sn and 132Sn + 124Sn

reactions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: (a): Directed flow 𝑣1 for 108Sn + 112Sn reaction plotted as a function of 𝑦0 at mean
impact parameter of 5.1 fm. (c): Directed flow 𝑣1 for 108Sn + 112Sn is plotted as a function of
𝑝𝑇/𝐴 and gated on 0.3 < 𝑦0 < 0.8. (e): Elliptical flow 𝑣2 as a function of 𝑦0 for 108Sn + 112Sn.
(b), (d) and (f) are the same as (a), (c) and (e) respectively but with results from 132Sn + 124Sn, all
at mean impact parameter of 5.2 fm.
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(a) (b)

(c)

Figure 4.15: (a): Coalescence invariant directed flow 𝑣1 as a function of rapidity. (b): Coalescence
invariant directed flow 𝑣1 as a function of transverse momentum 𝑝𝑇 , gated on 0.3 < 𝑦0 < 0.8. (c):
Coalescence invariant elliptical flow 𝑣2 as a function of rapidity.
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CHAPTER 5

MONTE CARLO SIMULATION

5.1 Introduction

The goal of an experiment is to extract knowledge on the physical world by comparing measured

results with theoretical predictions. This comparison is complicated by the fact that detector

resolutions, inefficiencies and aberrations often skew the observed results. It is imperative that the

impact of detector effects be understood to ensure the validity of the reconstructed values. This can

be achieved with Monte Carlo (MC) simulation.

MC simulation for S𝜋RIT TPC is developed as a part of S𝜋RITROOT framework. It incorpo-

rates known detector effects to generate electronic signals from event generators. The signals can

be analyzed as if they are experimental data. Due to the stochastic nature of the physical processes,

simulation needs to be repeated multiple times to understand the average performance of the TPC.

MC simulation routine follows a task-based sequential pipeline structure, similar to that of data

analysis routine in Section 3.2. The routine consists of 7 tasks which in the order that they are

presented below.

5.2 Geant4 Virtual Monte Carlo

The first task, “Geant4 Virtual Monte Carlo”, uses Geant4 (version 10-02-patch-01) to simulate

the interaction between detector material and the particle fragments. The geometry and material

of as well as magnetic field map in S𝜋RIT TPC are taken into consideration. Geant4 simulation

covers most of the important physical processes in particle-gas interaction, like particle transport,

energy loss, multiple scattering and particle decays [164]. This task outputs the amount of energy

loss in keV/cm and the location of interaction (𝑥, 𝑦, 𝑧).
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5.3 Space Charge Task

In Section 3.3.2, we showed two issues in experimental data that are caused by the space charge

effect. To recap briefly, the first issue is the fact that the peak location of Δ𝑉𝑥 distribution of beam

left particles differs from that of beam right particles. The second is the fact that center of mass

momentum distribution of beam left and beam right particles are not in agreement with each other

when they should be due to cylindrical symmetry arguments.

Here we will try to recreate these issues by distorting the Monte Carlo hit points with space

charge effect without correcting for it during track reconstruction. It serves as a confirmation

that space charge effect distorts detector measurements in ways that match our observation in the

experimental data.

By integrating Eq. (3.1), the expected lateral displacement for each drift electron as it drifts

toward pad plane can be calculated. Each MC interaction points will be displaced accordingly.

Unlike in the correction for experimental data where the sheet charge density (𝜎𝑆𝐶) is a measured

quantity, we are free to choose its value in simulation. All simulations in this sub-section will be

performed with an ad-hoc value of 𝜎𝑆𝐶 = 4 × 10−8 C/m2, which is approximately the average 𝜎𝑆𝐶

of all runs in 132Sn + 124Sn reaction.

As stated previously, the two main features of space charge effect are disagreement of momentum

distributions in Fig. 3.7 and peak locations of Δ𝑉𝑥 distributions in Fig. 3.8b between left-going

tracks and right-going tracks. With space charge distortion included in MC simulation and space

charge correction disabled in track reconstruction, both features can be reproduced in Figs. 5.1a

and Fig. 5.1b.

The space charge simulation procedure can also be used to simulate leakage space charge, first

described in Section 3.3.3. The only modification needed is to include the geometry and charge

density of the leakage sheet in electric field calculation. Experimental data shows that leakage sheet

charge density is 9.8 times the normal beam space charge density, so the leakage charge density

in the simulation is set to 9.8𝜎𝑆𝐶 = 3.92 × 10−7 C/m2. After the inclusion of leakage charge,

results from Monte Carlo simulation exhibit inconsistencies in reconstructed Triton momentum in
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Figure 5.1: (a): 𝑥-component of distance to vertex on target plane distributions. (b): Center-
of-mass momentum distributions. Both distributions are populated with simulated data after the
inclusion of space charge effect. Cut conditions are identical to what is being used in Fig. 3.7 and
Fig. 3.8b.

ways that are similar to what is being observed in experimental data. Simulated Triton momentum

distributions inside the three azimuth cuts of Fig. 3.13b are plotted in Fig. 5.2. To recap the cut

conditions, cut 1 corresponds to 74◦ < 𝜙 < 132◦, cut 2 corresponds to −29◦ < 𝜙 < 29◦ and cut 3

corresponds to −86◦ < 𝜙 < −143◦. On top of the azimuth cuts, a polar angle cut of 6◦ < 𝜃 < 12◦

is imposed on all three cuts. Simulated results with leakage charge simulation show that the

momentum distribution in cut 3 disagrees with that in cuts 1 and 2, just like results from data. The

dependence of Triton consistency on 𝑧-threshold, first shown in Fig. 3.16b for experimental data,

is roughly recovered in simulation in Fig. 5.3.

5.4 Drift task

The “Drift task” then converts the interaction points to secondary ionized electrons. The amount

of electrons 𝑁𝑒− created in an interaction is described by the following equation,

𝑁𝑒− =
Δ𝐸

𝐼
, (5.1)

where Δ𝐸 is the energy loss from Geant4 task and 𝐼 is the ionization coefficient of P-10 gas,

which is 26.2 eV. Electrons frequently collide with gas molecules and diffuse as they drift upward,
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Figure 5.2: Simulated Triton momentum distributions with the three azimuth cuts. (a): Momentum
distributions when "leakage" space charge is simulated. (b): Momentum distributions when
"leakage" space charge is not simulated.
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Figure 5.3: Triton consistency from Monte Carlo simulation (blue inverted triangle) that includes
leakage charge effect and experimental data (red circle). Both shows a sharp increase in values
beyond 𝑧-cut = 120 cm.
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therefore each secondary electron is displaced by a random vector �Δ𝑟. The random vector is

sampled from the following random distribution,

Δ𝑟𝑖 ∼ Gauss(0, 𝑐𝑖
√
𝐿). (5.2)

In this equation, 𝐿 is the vertical distance between interaction point and the anode wires and 𝑖 is

the component index which can either be 𝑡, the transverse direction or 𝑙, the longitudinal direction

relative to fragment trajectory. 𝑐𝑖 represents the diffusion coefficient along the two directions, whose

values are 𝑐𝑡 = 240 𝜇m/cm1/2 and 𝑐𝑙 = 340 𝜇m/cm1/2 according to Garfield++ calculation [165].

5.5 Pad Response task

The “Pad Response task” calculates the signal amplitude for each pad. Due to the spread of

avalanche electrons in the anode wires, some pads that are not directly over but near the secondary

electrons will also register signals with reduced amplitudes. It is found that signal amplitude

depends on the horizontal displacement between electron and the pad as a two-dimension Gaussian

function, whose width depends on trajectory angle. The width as a function of trajectory angle

is determined empirically [102]. For each secondary electron from the drift task, this empirical

function is used to distribute signals amplitude on different pads.

5.6 Beam Saturation task

Most incoming beam particles do not react with target foil and pass through the TPC detection

volume unimpeded. Even when collisions occur, most of them are peripheral as geometric cross-

section of peripheral event is larger than that of central event. In most peripheral collisions,

projectile nucleus is not broken up effectively which results in heavy residues with high atomic

number. When the highly charged particles from either un-reacted beam or heavy residues interacts

with detector gas, they create large amount of electrons and saturate TPC pads when those electrons

enter the wire plane. Therefore hit points directly below the projectile trajectory are not recorded.

Furthermore, some pads that were saturated in previous events may not have time to recover when
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Figure 5.4: 𝜙 vs. 𝜃 for protons. It is similar to Fig. 3.24, but here no clusters cut are applied.

the next collision event occurs. Those pads will be unresponsive for the entire duration of some

events. The purpose of Beam Saturation task is to simulate such saturation modes.

The effects of this saturation mode can be seen in Fig. 5.4 which shows the 𝜙 vs. 𝜃 (phase space)

distribution for protons in laboratory frame. The creases at 𝜙 ≈ ±90◦ (particles that moves directly

on top or below the projectile trajectory) demonstrate the inefficiencies created by the saturated of

pads by heavy residues. To accentuate beam saturation at large polar angle, no cut is set on number

of clusters and only distance to vertex cut of < 15 mm is applied.

The naive approach to simulate beam saturation is to include heavy-fragments in event generator.

Although pad saturation is normally handled by MC simulation without needing a dedicated beam

saturation task, this approach will not work for beam saturation as it suffers from performance and

memory issues. Heavy-fragments spawn orders of magnitude more ionized electrons than light

fragments due to its high electric charge. Since each electron is simulated individually in drift task,

this approach consumes a lot of computational powers. It crashes the simulation on our available

computer hardware due to excessive memory consumption.

As a result, empirical approach where pads are saturated randomly according to some given
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Figure 5.5: The unresponsive event fraction for each pad. It follows the beam trajectory. The
color scale on each pixel corresponds to the fraction of total experimental events where the pad is
completely unresponsive. White pixels represent pads that are never saturated at the beginning of
any events.

probability distributions is preferred. The saturation effect of heavy-fragment is manifested in

two ways which we called complete beam saturation and normal beam saturation. A pad suffers

from complete beam saturation when it is unresponsive for the entire duration of an event. In

normal beam saturation, the pad recovers and is responsive before secondary electrons from the

heavy-fragment reach the pad plane. Both saturation modes are needed to accurately reproduce the

observed creases.

To simulate complete beam saturation, we tabulate the experimental fraction of events for each

pad where it is unresponsive from the beginning of an event. This unresponsive event fraction for

each pad is visualized in Fig. 5.5. The empirical fraction is used as probability for each pad to be

saturated randomly at the beginning of each simulation event.

To simulate normal beam saturation, we register an extraordinarily large signal amplitude to

pads directly on top of the projectile track in the time bucket that corresponds to height of the
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Figure 5.6: 𝜙 vs. 𝜃 distribution of simulated protons when (a): only dead pads are simulated, (b):
both dead pads and normal beam saturation are simulated.

beam. This direct injection of saturation signal circumvents the need to simulate electrons in drift

task. This algorithm do not capture all the physics of heavy residues, but it is accurate enough to

reproduce the creases in Fig. 5.4.

Fig. 5.6a shows phase space distribution of simulated protons when only complete beam

saturation is applied. Although creases appear, the one at 𝜙 = −90◦ is not deep enough when

compared to experimental result. After normal beam saturation is also enabled, a deeper crease

is observed at 𝜙 = −90◦ in Fig. 5.6b. This indicates that both saturation modes are present in the

experiment.

5.7 Electronic task

The “Electronic task” converts signal amplitudes from Pad Response tasks into electronic

pulses. The pulses are stored as analogue-to-digital (ADC) readings at different time buckets.

Since pulse shape does not vary significantly from pulse to pulse apart from its height, a standard

template pulse shape can be extracted empirically. Electronic task takes this template pulse, scales
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its height according to signal amplitude and displaces its start time bucket to give the simulated

pulse [7]. If there are more than one interaction point below a pad, pulses from those interactions

are superimposed to form a complete pulse. If total pulse amplitude exceeds the dynamic range

of ADC, a template pulse which corresponds to saturated signal will be appended at the saturation

time. All signals beyond saturation time will be discarded.

5.8 Trigger task

Trigger conditions lead to biases due to their tendency to disproportionately rejects certain type

of events. Previous studies have demonstrated that event acceptance decreases with increasing

impact parameter [166]. To estimate and understand the effect of trigger conditions, simulation of

triggers are implemented. Here the simulated triggers will be described and simulated results will

be compared to experimental data.

The geometry and material of KATANA and KYOTO trigger arrays are imported into Geant4

Virtual Monte Carlo task, which allows for the interaction between fragments and the triggers to

be simulated. It is possible to convert energy loss in KATANA veto bars and KYOTO arrays into

simulated electronic pulses, but since we are only interested in studying the qualitative effects of

trigger bias, approximations can be made to reduce complexities in analysis and simulation. To

begin with, the electric charge of heavy-residue is not calculated from energy loss amplitude in

KATANA veto bars, rather the exact charge 𝑍 of fragments that passes through KATANA veto

bars is saved to files. Similarly, the energy depositions in KYOTO arrays will not be converted to

electric signal. Any energy deposition inside a KYOTO bar counts as a hit and the total number of

KYOTO bar being hit is saved to disk. This approximation is reasonable as KYOTO efficiency is

measured to be about 99% [166].

To simulate nuclear dynamics, events are generated from Ultra-relativistic Quantum Molecular

Dynamic (UrQMD) for 132Sn +124 Sn reactions at 270 MeV/u with soft EoS of Ref. [146]. This

model is chosen due to availability of its result across a wide range of impact parameters in our

analysis group. The same data set is re-used in Section 5.9.3 for the training of machine learning
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Figure 5.7: Simulated multiplicity distribution (blue line) and real multiplicity distribution (black
circle points). The curves are normalized to unit area.

algorithm. The impact parameter distribution follows the geometric cross-section 𝑑𝜎 = 2𝜋𝑏𝑑𝑏

from 𝑏 = 0 − 10 fm. These events are converted to electronic signals using S𝜋RITROOT and are

reconstructed with tracking algorithms, identical to what is being done with experimental data. The

multiplicity distribution of the reconstructed UrQMD simulation will be referred to as simulated

multiplicity distribution whereas that of experimental data will be referred to as real multiplicity

distribution. For comparison, both real and simulated multiplicity distributions are normalized to

unit area in the following discussions.

The simulated multiplicity distribution without any trigger conditions is plotted in Fig. 5.7 as

the blue histogram. The steep rise at low multiplicity reflects the fact that cross-section increases

with impact parameter. In contrast, the real distribution (black circle markers) shows a suppression

of low multiplicity events due to trigger conditions.

When trigger conditions are applied, the simulated distribution resembles real distribution
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better. The blue curve in Fig. 5.8 is drawn with trigger conditions set to KYOTO hits ≥ 4 and

KATANA 𝑍 ≥ 20, identical to what was used in S𝜋RIT experiment. On the high multiplicity (≥ 50)

side, there are more events in simulation than data, but that is most likely caused by inaccuracies

in clusterization of UrQMD rather than problems with trigger simulation. It is well-known that

UrQMD, like other similar QMD type models, over predicts light fragment yields [154]. This was

discussed in Chapter 4 when transport models were introduced.

On the low multiplicity side (≤ 40), the simulated distribution underestimates the yield of

peripheral events. This is also caused by inaccuracies in clusterization process: if the 𝑍 distribution

of heavy residues is inaccurate, the events rejected by KATANA simulation will not reflect the event

selection bias accurately. To compensate for this, the KATANA charge threshold in simulation is

raised from ≤ 20 to ≤ 35. This new threshold is chosen such that low multiplicity side of the

simulated multiplicity distribution matches with real distribution. The red histogram in Fig. 5.8

shows simulated multiplicity distribution after the charge threshold is raised.

To conclude, the shape of multiplicity distribution depends strongly on the trigger conditions.

We have reproduced the approximate shape of multiplicity distribution with trigger simulation. The

remaining differences between simulation and data can be attributed to inaccuracies in UrQMD

and the rough implementation of trigger simulations. Hopefully with advancements on nuclear

models, the agreement between data and simulation can be improved.

5.9 Application of Monte Carlo Simulation

One of the important applications of MC is embedding efficiency determination. Simulation is

used to generate electric pulses of S𝜋RIT TPC for a single particle. Those pulses will be added to

pulses from experimental events in a process called embedding, and the embedded events will be

analyzed with S𝜋RITROOT. The fraction of events in which S𝜋RITROOT successfully identifies

the embedded particle is the efficiency of the detector. This technique is also used in STAR

TPC [167].

Another application is to use Monte Carlo events for Closure testing, where analysis routine
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Figure 5.8: Simulated multiplicity distribution (blue line) and real multiplicity distribution (black
points). The curves are normalized to unit area.

reconstructs Monte Carlo data as if it is experimental data, and the extracted observable values

will be compared to the true values of event generator. This step is essential in demonstrating the

validity and precision of the analysis routine, as well as revealing any potential issues the analysis

may have missed.

The Monte Carlo routine was developed after the 2016 S𝜋RIT experiment. The code will be

useful for future experiment planning . The effects of any modifications to the detector can also be

studied in advance. Similar strategy has been used by other experiments for Detector Design and

Optimization and Software and Computing Design and Testing [168].

In this chapter, the various applications of Monte Carlo simulation in S𝜋RIT experiment will

be reviewed.
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5.9.1 Efficiency calculation with track embedding

Embedding is a special type of Monte Carlo simulation, used mainly for detector efficiency calcu-

lation. If we only consider single track events, efficiency can be calculated without the need for

special embedding techniques. It is simply the amount of reconstructed tracks divided by that of

initial tracks.

However, real events are rarely single track events. The multiplicities of some S𝜋RIT events

are often close to 50. Detector efficiency depends on particle distributions due to varying degree of

saturation or overlapping of electric pulses. If we want to calculate efficiency with ordinary Monte

Carlo simulation (i.e. simulate all ∼ 50 tracks in an event and see how many are reconstructed),

the events from event generator needs to accurately imitate real events. This is very hard to do,

especially when there are many different correlations between particles that are not yet studied.

On top of that, cosmic ray background which may affects the overall efficiency is also not being

simulated.

Single track embedding is developed to overcome those difficulties. Instead of simulating the

entire event, only one particle is simulated per event. The simulated signals will be added to signals

of a real event, unless the pad it tries to embed onto is already saturated. The combined event is

reconstructed and analyzed as normal event. The detector efficiency is the fraction of events where

embedded tracks are correctly identified.

Special routine is developed to handle the pulse addition (embedding) and to identify the

embedded tracks from all the other data tracks after track reconstruction. Fig. 5.9 shows a simplified

flow diagram for the embedding procedure. For a track to be identified as the embedded track among

all reconstructed tracks, it has to satisfy two conditions that quantify how similar the reconstructed

track is to the initial MC track. The first condition is 𝑁MC > 5, the fitted track has to make

use of at least 5 rows or columns of pad clusters from MC simulation. The second condition is

𝑁MC/𝑁total > 0.5, at least half of the clusters used to reconstruct the track have to originate from

MC simulation. If there are more than one track that satisfy all the similarity conditions, the one

with the smallest distance to vertex is chosen.
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Figure 5.9: Flow diagram for the embedding software.

Figure 5.10: Top view of the hit pattern before (a) and after (b) embedding. The plot behind (b)
shows signal generated by MC simulation.

Naturally this rises the question of how pad clusters from MC and data are differentiated.

Clusters are designated as MC cluster if at least one electric pulse in a cluster originates from MC.

The identification of MC pulses is done in Pulse shape analysis task in two steps: The first is to tag all

pulses that satisfy following two criteria as "not MC pulse": | (𝑄Exp−𝑄Exp + embed)/𝑄Exp | < 0.05

and |𝑡Exp − 𝑡Exp + embed | < 120 ns where 𝑄 and 𝑡 represent the charge and raise time of the fitted

pulse respectively. The subscript "Exp" means fitted pulses of only experimental data and "Exp +

embed" means fitted pulses of the embedded data. The second is to tag the all remaining pulses

that satisfy |𝑡Embed − 𝑡Exp + embed | < 120 ns as MC pulses.

The average embedding efficiency for proton, Deuteron, Triton, 3He and 4He as a function
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Figure 5.11: Average efficiency as a function of normalized rapidity 𝑦0. The averaging is done
over a transverse momentum values of 0 < 𝑝𝑇/𝐴 < 1000 MeV/c.

of normalized rapidity 𝑦0 = 𝑦𝐶𝑀/𝑦𝑁𝑁 is plotted in Fig. 5.11. In the calculation of average

efficiency, MC tracks are embedded onto events from 132Sn + 124Sn with multiplicity > 50. The

averaging is done over 𝑝𝑇 values of embedded tracks which are distributed uniformly within

0 < 𝑝𝑇/𝐴 < 1000 MeV/c. The embedding tracks only occupy azimuth values within cuts in

Table 3.1. It also considers track loss due to number of clusters and distance to vertex cut of

Table 3.1 for light fragments. Only the dependence of efficiency on 𝑦0 is plotted for brevity, but the

dependence on both 𝑦0 and 𝑝𝑇 are used during efficiency unfolding in Chapter 3.4.3. The detection

efficiency within the cuts are respectable as it is consistently larger than 80%. Note that efficiency

loss due to PID selection is not taken into account, which contributes to further efficiency loss at

negative rapidity.
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5.9.2 Verification of data analysis pipeline

Although each step in our data analysis pipeline is tested vigorously, it remains to be seen if

they can work in unison to reconstruct observables accurately. By analyzing data from Monte

Carlo simulation of S𝜋RIT TPC, major errors in the software could be caught by comparing the

reconstructed observables with the ground truth, which is the expected observable values from the

event generator. In this section, simulation always refers to the simulation of S𝜋RIT TPC responses

instead of QMD simulation.

Particle distributions are constructed in such a way that the expected observable values equal

to some initial chosen values. These chosen values are called ground truth. Event generator will

sample particles from the particle distributions, and these particles are simulated and reconstructed

with S𝜋RITROOT analysis framework. How close the reconstructed values are to the ground truth

is by definition the accuracy of the analysis.

The experimental 𝑝𝑇 vs. 𝑦0 = 𝑦𝐶𝑀/𝑦𝑁𝑁 distributions of proton, Deuteron, Triton, 3He and
4He for 112Sn + 124Sn reaction will be used as ground truth for event generator in the Monte

Carlo simulation of S𝜋RIT TPC to make sure that event generator imitates the behavior of real data

reasonably. Heavier isotopes are not simulated because their yield is low and they are not studied

in this thesis. Only distributions for 112Sn + 124Sn system are used because we have complete

4𝜋 solid angle coverage on that reaction (see Section 4.4). Due to computational limitations, only

events with 112Sn as the target and 124Sn as the projectile are simulated. Since the accuracy and

resolution of S𝜋RIT TPC are intrinsic properties of the detector and do not depend strongly on

reaction systems, our conclusion from 124Sn + 112Sn reaction can be applied to other reactions.

We first test the performance of rapidity distributions reconstruction. Accurate rapidity dis-

tributions are needed in reconstructing VarXZ and Coalescence invariant proton spectrum. The

ground truth 𝑝𝑇 vs. 𝑦0 distributions come from data with centrality gate of 〈𝑏〉 = 2.1 fm (𝑀 > 50).

The particle azimuth are assumed to be uniformly distributed for simplicity. It will be refined when

collective flows are considered.

The simulated particles from event generator are converted to ADC pulses. These simulated
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Simulation Data

Figure 5.12: PID from simulation (left) and experimental data (right). Fragments heavier than 4He
are not simulated in the Monte Carlo. Aside from the missing heavy fragments in the left panel,
the two look qualitatively similar.

pulses are treated as experimental data in the analysis pipeline. Cut conditions described in Table 3.1

are also used in the analysis of simulated data to keep the settings consistent. PID of simulated and

experimental data are plotted side-by-side in Fig. 5.12 which shows that, at first glance, the two look

very similar. However, the exact 𝑑𝐸/𝑑𝑋 values for each isotopes are slightly different and there are

no PID lines for isotopes heavier than 4He as they are not simulated in S𝜋RITROOT. Furthermore,

the amount of background junk tracks in real data differs from simulation which affects detector

efficiency. The PID lines are refitted with simulated data as the shape of simulated PID lines is

not identical to that of real PID lines and embedding efficiency is also recalculated with simulated

event as the background for single tracks to embed onto.

The reconstructed rapidity distributions and true distributions for proton, Deuteron and Triton

are plotted from left the right in that order in Fig. 5.13. Due to geometric coverage limitations of

S𝜋RIT TPC, particles with 𝑦0 < −0.6 are poorly detected so only spectrum with 𝑦0 > −0.6 are

shown. The upper half of each subplot in Fig. 5.13 is the rapidity distribution, with red histograms

being the ground truth and black solid circle being the reconstructed spectrum. The lower half is

the ratio of ground truth over reconstructed spectrum, which is very close to the expected value.
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Figure 5.13: From left to right: Rapidity distributions of proton, Deuteron and Triton. The red lines
correspond to the initial (true) distribution from event generator and the black points correspond
to the rapidity distributions reconstructed with results from simulation of S𝜋RIT TPC. The ratio
plots on the bottom of every graphs show the ratio of the true distributions over reconstructed
distributions.

This comparison verifies the data analysis procedure.

Next we test the performance of flow reconstruction. The 𝑝𝑇 vs. 𝑦0 distributions are extracted

from data with centrality gate of 28 < 𝑀 ≤ 49 which corresponds to 〈𝑏〉 = 5.2 fm. Flows are more

prominent in mid-peripheral than central events. Additional steps are needed to generate collective

flows from the event generator.

Let Φ be the reaction plane azimuth in laboratory frame, 𝜙𝑖 be the azimuth of the 𝑖th particle

in laboratory frame and 𝑣1𝑖 be the ground truth directed flow value for particle 𝑖, we can define

function 𝐹 (𝑥) as,

𝐹 (𝑥) = 𝑥 + 2𝑣1𝑖 sin 𝑥. (5.3)

Although not explicitly stated in the formulation, 𝑣1𝑖 does not need to be constant. It can be

a function of 𝑦0 or 𝑝𝑇 of particle 𝑖. The desired flow can be generated if 𝜙𝑖 is being sampled as

111



0.5− 0 0.5 1
beam Lab

/y
CM

 = 2y
0

y

0.1−

0

0.1

0.2

1v

Truth
Reconstructed

Simulation
Proton

0.5− 0 0.5 1
beam Lab

/y
CM

 = 2y
0

y

0.2−

0

0.2

1v

Truth
Reconstructed

Simulation
Deuteron

0.5− 0 0.5 1
beam Lab

/y
CM

 = 2y
0

y

0.2−

0

0.2

0.4

1v

Truth
Reconstructed

Simulation
Triton

Figure 5.14: From left to right: Directed flow 𝑣1 of proton, Deuteron and Triton as a function of 𝑦0.
The red lines correspond to the initial 𝑣1 from event generator and the black points correspond to 𝑣1
reconstructed with results from simulation of S𝜋RIT TPC. The estimation of reaction plane angle
with Q-vector or the estimation of reaction plane angle with sub-event method are re-calculated for
simulated data.

follows,

Φ ∼ U(0, 2𝜋),

𝜙𝑖 = Φ + 𝜙′𝑖 + 𝐹−1(𝜙′𝑖) where 𝜙′𝑖 ∼ U(0, 2𝜋),
(5.4)

where U is the uniform distribution and 𝐹−1(𝑥) is the inverse of the function 𝐹 (𝑥). In the

following analysis, the ground truth 𝑣1𝑖 follows the reconstructed 𝑣1 vs. 𝑦0 correlation from 112Sn

+ 124Sn at 〈𝑏〉 = 5.2 fm. The dependence of 𝑣1 on 𝑝𝑇 and any higher order flow term are not

included in the ground truth for simplicity.

The simulated data is again analyzed as if it is real data. Azimuth efficiency, Fourier coefficients

for acceptance correction and reaction plane resolution of real data cannot be used since flow

distributions in the simulation are simplified not to include dependence on 𝑝𝑇 and higher order

terms. They need to be re-calculated "empirically" from the simulated data following the steps in

Section 3.4.6. Fig. 5.14 shows that the reconstructed flow matches the true flow reasonably well.

112



5.9.3 Impact parameter determination with Machine Learning algorithm

The method of impact parameter determination using charged particle multiplicity in Section 4.4

will be referred to as traditional method in the following discussions.

Recent developments of machine learning (ML) algorithms demonstrated their potential in

impact parameter determination. Ref. [146] specifically shows that with a perfect detector, al-

gorithms based on Convolutional Neural Networks (CNN) and Light Gradient Boosting Machine

(LightGBM) can be used to predict impact parameter of 197Au + 197Au collisions at various

beam energies with simulated data generated from Ultra-relativistic Quantum Molecular Dynamics

(UrQMD) model, and the prediction error is smaller than that from the traditional method.

With the development of Monte Carlo simulation for S𝜋RIT TPC, such ML algorithms can

be extended beyond perfect detector by providing realistic simulation of detector response. In

this section, such algorithms will be developed and applied to real experimental data. A few key

observables will be compared to gauge the quality of the impact parameter selection.

5.9.3.1 Machine Learning Algorithms

Ref. [146] shows that performance metrics of LigthGBM is slightly better than CNN with perfect

detector, trained on events from UrQMD. Based on this, LightGBM is selected for this study. The

training data set consists of 135,000 UrQMD 132Sn +124 Sn events at 𝐸/𝐴 = 270 MeV distributed

uniformly between 𝑏 = 0 − 10 fm. The reaction is chosen to align with the experimental settings

of the S𝜋RIT experiment. UrQMD is configured to use the parameter set "SM-F", in which the

compressibility 𝐾sat = 200 MeV and the nucleon-nucleon elastic scattering cross-section in free

space is used as the in-medium cross-section.

Following Ref. [146], the following seven observables are chosen as features for the algorithm

to infer impact parameter: (i) Total multiplicity of charged particles. (ii) Transverse kinetic

energy of hydrogen and helium isotopes. (iii) Ratio of total transverse-to-longitudinal kinetic

energy. (iv) Total number of hydrogen and helium isotopes. (v) Averaged transverse momentum

of hydrogen and helium isotopes. (vi) Number of free protons at mid-rapidity |𝑦𝑧/𝑦𝑏𝑒𝑎𝑚 | ≤ 0.5.
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(vii) Averaged transverse momentum of free protons at mid-rapidity |𝑦𝑧/𝑦𝑏𝑒𝑎𝑚 | ≤ 0.5.

Mean deviation (Bias) and standard deviation (S.D.) of the predicted impact parameter will be

used to quantify the quality of the algorithm. Intuitively, bias and S.D. corresponds to accuracy

and precision, respectively, and are defined as:

Bias (𝑏pred) = 𝑏pred − 𝑏true

S.D. =
√

Var (𝑏pred − 𝑏true).
(5.5)

𝑏true is the true impact parameter used in event generation and 𝑏pred is the predicted impact

parameter from the LightGBM analysis. To study the performance as a function of impact parameter,

events are binned according to their 𝑏true values. The averaging is done over all events in the same

bin.

5.9.3.2 Results on simulated events

Fig. 5.15 shows bias (left panel) and S.D. (right panel) as a function of impact parameter (𝑏true).

LightGBM is used to train and test on two data sets: one includes the response of the S𝜋RIT

experiment (open red circles) and one without (blue solid stars). Both the training and the testing

data sets use the same UrQMD input parameter set of SM-F. As expected both bias and S.D. worsens

with the inclusion of detector response, especially in the mid-peripheral regions. Around 𝑏=3 fm,

both bias and S.D. worsen by a factor of 2 when detector response is included. The worsening

in bias and S.D. even when detector response is not included could be related to the physics

details of transport models. In central collisions (small 𝑏), nucleon-nucleon scatterings dominate

in the collision dynamics while in peripheral collisions (large 𝑏), the mean field dominates. In the

mid-central or mid-peripheral regions (𝑏=3-5 fm), accurate treatment of both the mean-field and

collisions are very important but transport models may fall short.

The black inverted triangle represent results from traditional method. The cumulative multi-

plicity distribution for traditional method is constructed by sampling the training data set randomly

with geometric cross-section 𝑑𝜎 = 2𝜋𝑏𝑑𝑏. In general, traditional method performs worse than
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Figure 5.15: Impact parameter dependence of bias (left panel) and S.D. (right panel) predicted
by LightGBM without detector response (solid stars) and with detector response (open circles).
Results from traditional method are also plotted as black inverted triangles.

ML, especially for central collisions. Experimentally, we also see that ML selects central collision

events better as discussed below.

If the determination of 𝑏 is perfect, both bias and S.D. will be zero. That happens for the

bias only in the range of 𝑏=5-8 fm. Over this region, the detector effects are minimal. S.D. never

approaches zero over the range of 𝑏 we investigate. The worsening of both bias and S.D. around

𝑏 ≈ 0 fm and 𝑏 ≈ 10 fm have been observed with other ML algorithms. This could be due to the

inability of the LightGBM and traditional method to predict accurately near the boundaries of the

observable limits.

To verify that application of the LightGBM algorithm trained on the UrQMD simulations is not

restricted to only simulations from the UrQMD model and can be generalized to experimental data,

we test the algorithm using simulations from four different transport models, Antisymmetrized

Molecular Dynamics (AMD) model [169, 170] plus three different families of Quantum Molecular

Dynamics (QMD) models, dcQMD [153, 171], IQMD [172, 173] and ImQMD [174]. All these

models, including UrQMD, use different techniques and approaches to simulate the nucleus-nucleus

collisions. All of them have had various success in describing different aspects of heavy ion collision
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data. Their differences, underlying assumptions and performance between models are detailed in

Refs. [175, 176]. In the simulations described here, default physics input parameters for each code

are used. This allows us to not only gauge the discrepancy caused by different model assumptions,

but also by uncertainty in input parameter values. In addition to these four different models, we

also include a different input parameter set for the UrQMD model, labeled as UrQMD/SM-I. It can

be considered as a different model.

Tests at 𝑏 = 3 fm are perform to quantify the performance of ML algorithm. About 5000

events at 3 fm are generated from each code. LightGBM trained with UrQMD/SM-F data is tasked

with predicting the impact parameter of these events. The bias and the corresponding S.D. values

are listed in the top, middle, and bottom sections of Table 5.1. The top section contains results

from the perfect detector (i.e. without the inclusion of detector response to simulated events) both

for training and testing. The middle section contains results from including the detector response

for both training and testing. Finally, in the bottom section, we apply the ML algorithm trained

with perfect detectors to testing events that include detector response. The last option gives the

largest deviation of 𝑏true by predicting the mean 𝑏pred as nearly 6 fm. Therefore the algorithm not

including detector response in the training is unacceptable and would not be discussed any further.

AMD has the largest bias (1.09 fm), reflecting the very different approaches used in simulating

HIC in AMD and other QMD-type models. As expected, both the bias and S.D. are larger than

those values listed under UrQMD/SM-F column in Table 5.1 since these transport models were

not used to train the events. Except for AMD, the bias and S.D. from different transport models

are similar to the results of UrQMD/SM-I where the training and testing data use different input

parameter sets. For AMD, while the accuracy worsens, the S.D. values are similar to the reference

of UrQMD/SM-F.

As a reference, the best case scenario is LightGBM predictions on UrQMD/SM-F since training

and testing data sets come from the same model. When average performance of different models is

compared to it, S.D. increases by 20%. The UrQMD/SM-F under-predicts while the other models

over-predict 𝑏. As expected, including the detector response worsens the bias and S.D. for all
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Table 5.1: Statistical properties of 𝑏pred on simulated events from various transport models.
Simulated data from UrQMD/SM-F input parameter set are used for training. The bias values are
plotted as absolute numbers. All values are in unit of fm.

Model AMD dcQMD ImQMD IQMD Average UrQMD/
SM-F

UrQMD/
SM-I

Perfect detector

𝑏pred 4.09 2.84 3.29 3.19 3.35 2.77 3.20
S.D. 0.68 1.00 0.74 0.88 0.83 0.66 0.94
|Bias| 1.09 0.16 0.29 0.43 0.49 0.23 0.20

With realistic detector response

𝑏pred 4.06 3.77 3.22 2.66 3.43 2.44 2.96
S.D. 0.91 1.22 1.02 1.03 1.04 0.94 1.05
|Bias| 1.06 0.77 0.22 0.34 0.60 0.56 0.04

Trained with perfect detector, applied to simulation with detector response

𝑏pred 6.45 6.45 6.25 6.04 6.30 5.87 5.69
S.D. 0.44 0.46 0.44 0.46 0.45 0.62 0.46
|Bias| 3.45 3.45 3.25 3.04 3.30 2.87 2.69

models. Assuming that the data could be described by the average of the models, then one could

expect that the ML algorithm could determine 𝑏 with a bias of 0.6 fm and S.D. of 1 fm from

experimental data.

5.9.3.3 Results on experimental data

After extensive tests with transport models, we apply the ML algorithm to experimental data.

Fig. 5.16 plots the correlations between 𝑏pred from LightGBM and 𝑏pred from traditional method.

Generally, they are strongly correlated as evidenced by the overall diagonal distribution. Experi-

mental cross-section measurements sets 𝑏max of traditional method to be 7.5 fm while 𝑏pred from

the LightGBM extends beyond the sharp cut off limit resulting in a horizontal tail at 7.5 fm. It

should be noted that the measured cross-section from which 𝑏max is calculated is smaller than the

true geometric cross-section due to trigger bias.
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Figure 5.16: Tthe 𝑏pred values from the LightGBM is plotted against that from traditional method.
Color represent number of counts in each bin. The red diagonal line shows the expected correlation
if impact parameters are determined perfectly.

The triangle in Fig. 5.17 shows the experimental impact parameter distributions from the sharp

cut off model of eq. (4.4). The impact parameter distribution predicted by the LightGBM (open

symbols) exhibits a tail that extends 𝑏pred beyond 7.5 fm. It resembles smearing of the experimental

impact parameter distribution which is consistent with the expectation that the experimental data

should contain a range of impact parameters that would extend beyond 𝑏max. In addition, one would

expect the sharp cutoff model multiplicity distribution should always be equal to or higher than the

realistic multiplicity distributions. Fig. 5.17 shows that from 4 to 6.5 fm, there are slightly more

events from LightGBM than from traditional method. This apparent discrepancy is not understood.

It could be that, not all the detector response has been accurately reproduced. It could also be

that the UrQMD is not describing the experimental data accurately enough in this region as is also

evidenced by the worsening of the accuracy and broadening of S.D. in Fig. 5.15. Nonetheless, the

effects are small.

Unlike events from transport models, we do not have the true value of impact parameter from
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Figure 5.17: Distribution of 𝑏pred made with the LightGBM (open symbols) and sharp cut off
model with 𝑏max = 7.5 fm (black line).

experimental data so we cannot evaluate the accuracy of 𝑏pred values. Fig. 5.17 suggests that the

LightGBM algorithm determines the impact parameter for peripheral events more accurately as

it does not have the sharp cutoff limit and the impact parameter smearing occurs naturally. To

evaluate the performance at central collisions, we use observables whose qualitative behavior with

impact parameter is known.

One such observable is the reaction plane resolution 〈cos(Φ𝑀 − Φ𝑅)〉[115]. This observable

was described in Section 3.4.6. Here Φ𝑀 and Φ𝑅 are the measured and the real azimuthal angle

of the reaction plane, respectively. The reaction plane should vanish as 𝑏 approaches zero due to

azimuthal symmetry. In a perfect head-on collision (𝑏 = 0 fm), the fragment emission is isotropic

and Φ𝑀 is reduced to a random number between 0 − 2𝜋, which makes the average of cosine zero.

As shown in Fig. 5.18, the reaction plane resolution 〈cos(Φ𝑀 − Φ𝑅)〉 decreases with 𝑏pred.

However, at 𝑏pred < 3 fm the reaction plane resolution is closer to zero if the central event selections

are made with LightGBM. This finding supports the assertion that events selected by LightGBM

are more central than the corresponding events selected by traditional method, although neither
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Figure 5.18: The reaction plane angle resolution, 〈cos(Φ𝑀 − Φ𝑅)〉 is plotted against 𝑏pred. The
predictions are made with traditional method (inverted black triangle) and LightGBM (red open
circle).

intercepts the 𝑦-axis at zero.
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CHAPTER 6

EQUATION OF STATE PARAMETER CONSTRAINTS

6.1 Introduction

We are interested in searching for the parameter space where model predictions agree with

measured observables. The observables described in Chapter 4 are constructed to overcome

limitations of clusterization process and should be directly comparable to model predictions.

In this analysis, the Improved Quantum Molecular Dynamic (ImQMD) model will be used for

constraining nuclear EoS parameters.

We will search in a multi-parameter space to explore the high dimensional correlations between

different pairs of parameters. Such a high dimensional search is made with Bayesian analysis using

Markov Chain Monte Carlo (MCMC) sampling. It incorporates our initial belief on parameter

values (often based on results from other analysis) as prior and searches the high dimensional

parameter space efficiently. This analysis returns the posterior distribution, the probability distri-

bution in multivariate parameter space when conditioned on the measured observables. It can be

easily projected onto one or two dimensional marginal probability distribution for visualization

and interpretation.

A downside to such analysis is the intense computational requirement. MCMC sampling

asks for model predictions on tens of thousands of parameter sets. Given that ImQMD typically

takes roughly half an hour to make prediction on each parameter set, MCMC sampling will

be prohibitively slow. To speed-up the calculations, we adopt the Gaussian emulator [177] and

Principal component analysis [178]. It is a non-parametric interpolation algorithm that interpolates

model predictions from a few tens of parameter sets. The emulator is robust to statistical fluctuations

from finite statistics of ImQMD particle simulation, able to estimate interpolation uncertainty and

fast.

In this chapter, we will describe the mathematical background of Bayesian analysis, MCMC,

121



Gaussian emulator and Principal component analysis. These algorithms will be tested and validated

with closure test. A constraint on effective mass will be searched through this analysis and when

it is used in conjunction with results from pion spectral yield ratios, the uncertainty on 𝐿 can be

reduced by 39%.

6.2 Bayesian analysis

Denote 𝑛 as the number of free nuclear EoS parameters, 𝜃𝑖 as the 𝑖th parameter, 𝑚 as the number

of observables, 𝑦
𝑗
𝑃 ( �𝜃) as the predicted values for the 𝑗 th observable from a given parameter set

�𝜃 = {𝜃1, ...𝜃𝑛}, 𝜎 𝑗
𝑃 ( �𝜃) as the statistical uncertainty of 𝑦 𝑗

𝑃 ( �𝜃), 𝑦
𝑗
𝑀 as the measured observable value

and 𝜎
𝑗
𝑀 as the experimental uncertainty of 𝑦 𝑗

𝑀 . We will refer to the collection of all predicted and

measured observables as −→𝑦𝑃 and −−→𝑦𝑀 , respectively.

From Bayes theorem, the posterior probability distribution is given by𝑃( �𝜃 |−−→𝑦𝑀 ) = 𝑃( �𝜃)𝑃(−−→𝑦𝑀 | �𝜃).
The first term 𝑃( �𝜃) is referred to as Prior, which is the assumed probability distribution of the

parameters from prior knowledge. In other words, it is constraints from other experiments. The

second term 𝑃(−−→𝑦𝑀 | �𝜃) is called the likelihood, which is the conditional probability of having the

measured observable values given �𝜃. It is formulated as,

𝑃(−−→𝑦𝑀 | �𝜃) ∝ exp

(
−

𝑚∑
𝑖=1

(𝑦𝑖𝑀 − 𝑦𝑖𝑃 ( �𝜃))2

2𝜎𝑖2( �𝜃)

)
. (6.1)

In this expression, 𝜎𝑖2( �𝜃) = 𝜎
𝑗
𝑀

2 + 𝜎
𝑗
𝑃

2( �𝜃) to incorporate the uncertainty from both the

experiment and model simulation.

It is hard to visualize distributions with dimensionality higher than three. To interpret the

high dimensional posterior distribution, it is customary to project the distribution onto one or two

dimensions such that correlation of any pairs of parameters can be examined. Such projected

distributions are called marginal distributions and defined as

𝑃(𝜃𝑖, 𝜃 𝑗 ) =
∫

· · ·
∫ ∞

−∞
𝑃( �𝜃 |−−→𝑦𝑀 ) 𝑑𝜃1 . . . 𝑑𝜃𝑖−1 𝑑𝜃𝑖+1 . . . 𝑑𝜃 𝑗−1 𝑑𝜃 𝑗+1 . . . 𝑑𝜃𝑛, (6.2)
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where 𝜃𝑖 and 𝜃 𝑗 are the pair of parameters to be visualized. With conventional numerical

integration technique, such integration is computationally expensive. This is mitigated by sampling

the posterior with Markov Chain Monte Carlo (MCMC) which randomly walks along the parameter

space according to some pre-defined conditions [179]. Those conditions are imposed such that

the path of this random walk will converge to posterior distribution. Marginal distributions can be

plotted efficiently by filling histograms with parameters from the samples. All posterior distributions

in this study are generated with the help of python library PyMC2 [180].

6.3 Gaussian emulator

Gaussian process will be used as a surrogate model in lieu of ImQMD in MCMC sampling.

It is an interpolation algorithm for arbitrary dimensional input [177]. Only calculations from

ImQMD at several tens of randomly distributed parameter sets are needed for the interpolation to

work accurately. Gaussian process is better than other interpolation algorithms because it is robust

to fluctuations in the training samples and able to estimate interpolation uncertainty. Gaussian

process is also non-parametric, meaning that the interpolation does not assume any predetermined

functional forms. This is advantageous in eliminating potential sources of bias in our choice of

regression functions.

Gaussian process takes the form of a high dimension Gaussian distribution, with dimensionality

equals to number of training sets [177]. Denote 𝑛 as the number of training sets, 𝑥𝑖 and 𝑦𝑖 as the

set of nuclear EoS parameters and predicted observable values of the 𝑖th training set, respectively.

A covariance function 𝑘 (𝑥𝑖, 𝑥 𝑗 ) is specified ad-hoc to quantify the covariance between pairs of

training sets. The discussion on covariance function is delayed until later sections. Consider the

following 𝑛 × 1 column matrix 𝑓 with random variable elements that follow multivariate Gaussian

distribution,

𝑓 ∼ N(0, 𝐾 (𝑋, 𝑋)), (6.3)

where 𝑋 represents the collection of EoS parameters 𝑥𝑖 of all 𝑛 training sets and 𝐾 (𝑋, 𝑋) is

a 𝑛 × 𝑛 matrix with elements 𝐾𝑖, 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗 ). To predict outcome on a new parameter set 𝑥new,
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Eq. (6.3) can be written as,

����
𝑓new

𝑓

���� ∼ N
���� 0,

����
𝐾 (𝑥new, 𝑥new) 𝐾 (𝑥new, 𝑋)
𝐾 (𝑋, 𝑥new) 𝐾 (𝑋, 𝑋)

����
����. (6.4)

In this equation, 𝑓new is a scalar random variable, 𝐾 (𝑥new, 𝑋) is a 1 × 𝑛 row matrix with

elements 𝐾0,𝑖 = 𝑘 (𝑥new, 𝑥𝑖), 𝐾 (𝑋, 𝑥new) = 𝐾 (𝑥new, 𝑋)𝑇 and 𝐾 (𝑥new, 𝑥new) = 𝑘 (𝑥new, 𝑥new) is a

scalar. Gaussian process assumes that the prediction of ImQMD follows 𝑓new, with an important

twist: since the value of column matrix 𝑓 is given as the training sets, the distribution of 𝑓new

should be conditioned on 𝑓𝑖 = 𝑦𝑖. Denote 𝑦 as a column matrix with elements 𝑦𝑖. After applying

the formula for conditional Gaussian distribution (see Ref. [181]), the probability distribution of

𝑓new becomes,

P( 𝑓new | 𝑓 = 𝑦) = N (
𝐾 (𝑥new, 𝑋)𝐾 (𝑋, 𝑋)−1𝑦,

𝐾 (𝑥new, 𝑥new) − 𝐾 (𝑥new, 𝑋)𝐾 (𝑋, 𝑋)−1𝐾 (𝑋, 𝑥new)
)
.

(6.5)

𝑦𝑖 from ImQMD are not exact due to statistical fluctuations. Assume that such random noises

follow independent and identically distributed Gaussian function with variance 𝜎2, they can be

added to the covariance in Eq. (6.3),

����
𝑓new

𝑓

���� ∼ N
���� 0,

����
𝐾 (𝑥new, 𝑥new) 𝐾 (𝑥new, 𝑋)
𝐾 (𝑋, 𝑥new) 𝐾 (𝑋, 𝑋) + 𝜎2𝐼

����
����. (6.6)

Equation (6.5) has to be modified to accommodate the additional noise,

P( 𝑓new | 𝑓 = 𝑦) = N (
𝐾 (𝑥new, 𝑋) [𝐾 (𝑋, 𝑋) + 𝜎2𝐼]−1𝑦,

𝐾 (𝑥new, 𝑥new) − 𝐾 (𝑥new, 𝑋) [𝐾 (𝑋, 𝑋) + 𝜎2𝐼]−1𝐾 (𝑋, 𝑥new)
)
.

(6.7)

Covariance function is essential in the construction of Gaussian process [182]. A major

assumption in interpolation is that 𝑓new is similar to 𝑦𝑖 if 𝑥new is close to 𝑥𝑖. The covariance

function encodes our assumption on the similarity between points. A commonly used covariance

function is the squared exponential function,

𝑘 (𝑥1, 𝑥2) = 𝜎𝑓 exp
(
−

𝑚∑
𝑖=1

(𝑥𝑖1 − 𝑥𝑖2)2
2𝑙2𝑖

)
. (6.8)
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In the equation, 𝑚 is the number of dimension of EoS parameters, 𝑥𝑖 is the 𝑖th component of 𝑥, 𝑙𝑖

is the length-scale and 𝜎𝑓 is the covariance amplitude. 𝑙𝑖, 𝜎𝑓 and 𝜎 of Eq. (6.6) are free parameters

that one need to adjust for optimal performance. In the context of machine learning, they are called

hyperparameters and the problem of selecting optimal values are called model selection. Squared

exponential function is used in this chapter.

We will use leave-one-out cross-validation (LOO-CV) for model selection [183]. The idea is

to remove a particular parameter set from the training data set. The leave-one-out point, which is

usually called the validation data, is used to quantify the predictive accuracy with log probability,

log 𝑝(𝑦𝑖 |𝑋−𝑖 , 𝑦−𝑖 , hyperparameters) = −1
2

log(𝜎2
pred) −

(𝑦𝑖 − 𝑦pred)2
2𝜎2

pred
− 1

2
log 2𝜋. (6.9)

(𝑋−𝑖 , 𝑦−𝑖) denotes the set of training data with 𝑖th set left out and 𝑦pred and 𝜎pred are the

predicted values and uncertainty at 𝑥𝑖 respectively. The hyperparameters will be adjusted until the

sum of log-likelihood over all left-out sets is maximized,

hyperparameters = argmax
𝑛∑

𝑖=1
log 𝑝(𝑦𝑖 |𝑋−𝑖 , 𝑦−𝑖 , hyperparameters) (6.10)

The maximization is performed with Adaptive Movement Estimation (ADAM) algorithm [184].

For a more comprehensive description and derivation of Gaussian process, readers are encouraged

to read Ref. [185].

6.4 Principal Component Analysis

The output of Gaussian process is usually a scalar. Although multivariate Gaussian process has

been developed [186], they are invented recently and we do not have access to such algorithms.

This is problematic because our observables are spectrum with different values at different rapidity

or momentum bins. The desired output should be a vector of the spectrum values instead of a

scalar.

The naive approach is to emulate each bin with an independent Gaussian process, but this

approach carries some major drawbacks. If the spectrum is binned finely, a lot of Gaussian
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processes are needed which slows down the calculation. The inability to capture the correlated

errors between nearby bins in the spectrum is also a potential concern.

Following the approach adopted by the Modeling and Data Analysis Initiative (MADAI) [187],

we perform a dimension reduction on the spectrum with Principal Component Analysis (PCA) be-

fore interpolation. PCA returns the ranked orthogonal coordinate bases which satisfy the following

conditions: the variance of spectrum projections on the first basis is the greatest among all possible

orthogonal coordinate bases, and the variance of spectrum projections on the second basis is the

greatest among all possible orthogonal coordinate bases that are orthogonal to the first one, etc.

These bases are called principal components (PCs) and only PCs with large variance needs to be

emulated. Low variance PCs can be approximated as constant without losing too much accuracy.

The formula for PCA is shown here without proof. Details of the derivation can be found in

Ref. [178] for detailed derivations. Denote 𝑑 as the number of bins in the spectrum and Σ as the

𝑑 × 𝑑 covariance matrix of all bins in spectrum on training data set, and 𝑦𝑖 as the 𝑑-dimensional

vector representing the 𝑖th spectrum in the training set. If we only keep the first 𝑘 components, then

𝑦𝑖 can be transformed into a lower dimensional vector 𝑧𝑖 by,

𝑧𝑖 = eig(Σ, 𝑘) (𝑦𝑖 − 𝑦). (6.11)

Here, eig(Σ, 𝑘) is the matrix formed by stacking 𝑘 row-eigenvectors of Σ with 𝑘 largest eigen-

values. 𝑦 is the mean 𝑦 vector over all the observed data points and 𝑧𝑖 is a 𝑘 dimensional vector.

It is important to note that 𝑘 ≤ 𝑑 since number of eigenvectors equals to the dimension of the

covariance matrix. 𝑦𝑖 can be approximated by 𝑧𝑖 using the following inverse transformation,

𝑦𝑖 ≈ 𝑦 + eig(Σ, 𝑘)𝑇 𝑧𝑖 . (6.12)

It is guaranteed that 𝑦𝑖 ≈ 𝑦𝑖 if 𝑘 is large enough. To be precise, let 𝜆𝑖 be the 𝑖th largest eigenvalue

and we use superscript to denote the component of a vector, then 𝑦𝑖 satisfies the following condition,

1
𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

(𝑦 𝑗
𝑖 − 𝑦𝑖

𝑗 )2 =
𝑑∑

𝑖=𝑘+1
𝜆𝑖. (6.13)
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In the above equation, 𝑛 is the number of training parameter sets. This means that as long as

𝜆𝑖 for all 𝑖 > 𝑘 are all very small, the averaged square difference between 𝑦𝑖 and 𝑦𝑖 will be very

small. Therefore, it is possible to approximate 𝑑−dimensional spectrum with just 𝑘−dimensional

PCs, where 𝑘 ≤ 𝑑. Experience with S𝜋RIT spectra suggests that rarely do we need more than three

PCs to emulate a spectrum, even if the spectrum contains as much as fifteen points.

During MCMC, 𝑘 emulators are used to interpolate 𝑘 PCs independently. The interpolated PCs

will be transformed back to spectrum with equation (6.12). The emulated uncertainties for each PCs

are also transformed to covariance matrix of the spectrum. The truncation error of equation (6.13)

is divided by 𝑑 to estimate the average truncation error of each bin, which will then be added to the

diagonal elements of covariance matrix for likelihood estimation.

6.5 Sensitivity of each observable

The training data for Gaussian emulator comes from ImQMD predictions on 70 parameter

sets. On each parameter set, calculation is repeated for each required reaction system and impact

parameter. For each calculation, 3000 events are simulated. The following three classes of

observables, totaling in eight spectra, are extracted on each parameter set,

1. Coalescence Invariant Directed flow (C.I. 𝑣1) at 𝑏 = 5 fm

a) C.I. 𝑣1 as a function of 𝑦0 for 108Sn + 112Sn

b) C.I. 𝑣1 as a function of 𝑝𝑇 for 108Sn + 112Sn (0.3 < 𝑦0 < 0.8)

c) C.I. 𝑣1 as a function of 𝑦0 for 132Sn + 124Sn

d) C.I. 𝑣1 as a function of 𝑝𝑇 for 132Sn + 124Sn (0.3 < 𝑦0 < 0.8)

2. Coalescence Invariant Elliptical flow (C.I. 𝑣2) at 𝑏 = 5 fm

a) C.I. 𝑣2 as a function of 𝑦0 for 108Sn + 112Sn

b) C.I. 𝑣2 as a function of 𝑦0 for 132Sn + 124Sn

3. Stopping (VarXZ) at 𝑏 = 1 fm
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a) VarXZ of p,d and t for 108Sn + 112Sn (Histograms flipped along 𝑦0 = 0)

b) VarXZ of p,d and t for 112Sn + 124Sn

The construction and physical importance of each observable are described in Chapter 4. In

addition to symmetry energy term, the momentum dependence of nuclear mean-field potential

also influences the properties of nuclear matter [188–194]. This dependence manifests itself as

a reduction of nucleon masses. The ratio of effective mass in symmetric matter to free nucleon

mass 𝑚𝑁 is called the isoscalar effective mass 𝑚∗
𝑠/𝑚𝑁 . In asymmetric matter, the contribution

of isovector (symmetry) mean-field potential causes the neutron and proton effective mass to

differ [188, 190, 191], which is quantified in terms of isovector effective mass 𝑚∗
𝑣/𝑚𝑁 [189]. The

in-medium nucleon-nucleon (NN) cross sections in ImQMD is formulated as [195],

𝜎med
QMD =

(
1 − 𝜂𝜌

𝜌0

)
𝜎free, (6.14)

where 𝜎free is the NN cross-section in free space taken from Ref. [196] and 𝜂 is the reduction

factor to be determined. These parameters, together with 𝑆0 and 𝐿 in density dependence of

symmetry energy term, strongly influence the dynamics of nuclear collision. It is expected that the

predicted flow and stopping depend on the competing effect of in-medium cross-section, symmetry

forces and the momentum dependence in mean-field potential.

The 70 parameter sets are sampled randomly and with Latin Hyper-cube within parameter

ranges in Table 6.1.

Table 6.1: The ranges of parameters for the training of Gaussian emulator.

Parameters Min. Max.

𝑆0 (MeV) 25 50
𝐿 (MeV) 15 160
𝑚∗

𝑠/𝑚𝑁 0.6 1
𝑚∗

𝑣/𝑚𝑁 0.6 1.2
𝜂 -0.25 0.25
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The sensitivity of each observable group on nuclear EoS parameters can be tested with the

Closure test, where the analysis is performed by pretending ImQMD prediction from a new param-

eter set, one that is not used in the training of Gaussian emulator, is the experimental data. If the

marginalized posterior distributions do not show narrow peaks around the initial values, it indicates

a lack of sensitivity, and vice versa.

This section can be separated into two parts: The first part examine the sensitivity of each

individual observable group and the second part tests the maximal constraining power when all

observables are combined in a simultaneous global fit. In the first part, Bayesian analysis will be

performed three times, each by comparing only one class of observables. Pairwise marginalize

probability distributions between all pairs of parameters from the Closure tests will be shown.

This analysis illustrates the correlation between parameters and observables qualitatively, so the

Closure test is only done on one randomly generated parameter set for brevity. The second

part is a quantitative analysis that examines the average performance of the analysis across the

entire parameter space. All observables are compared simultaneously for maximum performance.

Closure test is repeated 18 times, each with a randomly generated set of parameters to span

the entire parameter space uniformly. The one-dimensional marginalized distributions will be

fitted with asymmetric Gaussian to estimate predicted averages and uncertainties, which are then

compared to the true initial parameter values to gauge the accuracy of the algorithm.

6.5.1 Sensitivity of each group of observables

Through out this section, uniform priors within ranges listed in Table 6.1 are used with the true

parameter values as 𝑆0 = 37.4 MeV, 𝐿 = 47.3 MeV, 𝑚∗
𝑠/𝑚𝑁 = 0.80, 𝑚∗

𝑣/𝑚𝑁 = 1.11 and 𝜂 = 0.13.

The parameter values are chosen at random, and the qualitative dependency of posterior on different

groups of observables sheds light into the constraining power of the observables.

The posterior in Fig. 6.1 is the result of closure test when only the first group of observables

(C.I. 𝑣1) is being compared. It tries to simultaneously fit the spectrum of coalescence invariant

proton 𝑣1 as a function of 𝑦0, and 𝑣1 as a function of 𝑝𝑇 gated on 0.3 < 𝑦0 < 0.8 for 108Sn
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Figure 6.1: Posterior of closure test when all observables in group 1 (C.I. 𝑣1) are compared. The
black line in every plot and the black star in every off diagonal plot shows the initial true parameter
values.

+ 112Sn and 132Sn + 124Sn at 𝑏 = 5 fm. The black vertical lines in the diagonal plots and

star markers in the off-diagonal plots show the location of the true parameter values as a visual

reference. The contour on off-diagonal plots shows 68% (1𝜎) confidence interval, 95% (2𝜎) and

99% (3𝜎) confidence interval with increasingly lighter shades. The posterior peak for 𝑚∗
𝑠/𝑚𝑁

is narrow, which is consistent with the expectation that directed flow is related to the momentum

dependence of nuclear mean field [11]. There is an anti-correlation between 𝑚∗
𝑠/𝑚𝑁 and 𝑚∗

𝑣/𝑚𝑁

which demonstrates that increasing 𝑚∗
𝑠/𝑚𝑁 and 𝑚∗

𝑣/𝑚𝑁 has the opposite effect on coalescence

invariant directed flow.

The sensitivity of coalescence invariant elliptical flow in Fig. 6.2 is slightly different. The figure

is the posterior of closure test by fitting only the coalescence invariant proton 𝑣2 as a function of

𝑦0 for 108Sn + 112Sn and 132Sn + 124Sn at 𝑏 = 5 fm. It reveals a narrow peak on 𝑚∗
𝑣/𝑚𝑁 as
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Figure 6.2: Same as Fig. 6.1 but only observables in group 2 (C.I. 𝑣2) are being fitted.

well as 𝑚∗
𝑠/𝑚𝑁 , which indicates that higher order flow terms are more sensitive to the isovector

contributions to momentum dependence.

The final group of observables to be tested is VarXZ from 108Sn + 112Sn and 112Sn + 124Sn

at 𝑏 = 1 fm. Previous studies showed that VarXZ is mostly sensitive to the in-medium cross-

section [32], and closure test corroborates this finding with a narrow peak on 𝜂 in Fig. 6.3. The

peaks of 𝑚∗
𝑠/𝑚𝑁 and 𝑚∗

𝑣/𝑚𝑁 are wider than those on Fig. 6.2, which indicates that the constraining

power of VarXZ on effective masses is not as strong as 𝑣2.

The maximum constraining power can be obtained by comparing all of the above observables

simultaneously in one global fit. Posterior with all observables being compared are shown in

Fig. 6.4. This shows that 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and 𝜂 can be recovered with reasonable accuracy while

the sensitivity on 𝑆0 and 𝐿 is poor.
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Figure 6.3: Same as Fig. 6.1 but only observables in group 3 (VarXZ) are being fitted.

6.5.2 Performance across parameter space

All posteriors in the previous section are analyzed on only one particular true parameter set, but

the accuracy may change with parameter values. To understand the behavior of Bayesian analysis

across the entire parameter space, closure test is repeated 18 times, each with a different randomly

generated parameter set to cover the phase-space uniformly. The predicted values are plotted

against the true values in Fig. 6.5. The error in the figure is the 68% confidence interval from

the marginalized posterior distribution. Off-diagonal correlations between pairwise parameters are

not shown for brevity. The red dotted 𝑥 = 𝑦 line on each sub-plot represents the best possible

performance where predicted values equal to true values. The sensitivities on 𝑆0 and 𝐿 is lacking

throughout the parameter space, but the sensitivities on 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and 𝜂 are quite good as

the analysis is able to predict the correct values.
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Figure 6.4: Same as Fig. 6.1, but all eight spectra across three groups of observables are used
simultaneously in this analysis to demonstrate the maximal constraining power.

6.6 Constraints from experimental results

With the validity of the algorithms established, a comparison between ImQMD and experimental

data can be performed to constraint nuclear EoS parameters. Unlike in previous sections where

priors of all parameters are uniform, Gaussian priors are used on 𝑆0 ∼ Gauss(𝜇 = 35.3, 𝜎 = 2.8)
MeV and 𝐿 ∼ Gauss(𝜇 = 80, 𝜎 = 38) MeV. These priors come from the analysis of pion spectrum

ratios in Section 4.5.2.

The centrality of the experimental data are selected with multiplicity gate and the selected events

spans a range of impact parameters. The ranges of multiplicities are different across reactions and

observables because multiplicity distributions of different systems are not identical and centrality

requirements for different observables are also different. The mean impact parameters for each

observable are 〈𝑏〉 = 5.1 fm in 108Sn + 112Sn reaction and 〈𝑏〉 = 5.2 fm in 132Sn + 124Sn reaction
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Figure 6.5: The predicted parameter values plotted against the true parameter values from the 18
closure tests. The markers and error bars indicate the medians and 68% (1𝜎) confidence intervals
from the marginalized probability distributions respectively. The red diagonal lines on all five plots
are 𝑥 = 𝑦 to indicate where each point should be if the algorithm performs with perfect accuracy
and precision.

for 𝑣1 and 𝑣2, and 〈𝑏〉 = 1.1 fm in 108Sn + 112Sn reaction and 〈𝑏〉 = 1.0 fm in 112Sn + 124Sn

reaction for VarXZ. The ImQMD predictions that the emulator is being trained on, however, are

only calculated at a single impact parameter enumerated in Section 6.5 without spanning a range.

The impact parameters in ImQMD calculations differ slightly from the mean impact parameter

of the selected events from the experiment, but given that the resolution of impact parameter

determination with multiplicity is larger than 0.5 fm (see Section 5.9.3), this slight disagreement is

negligible.

The posterior is shown in Fig. 6.6. Tight constraints on 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and 𝜂 are achieved

while the uncertainty of 𝑆0 and 𝐿 remains large. The performance is consistent with our findings

from closure test. The agreement between experimental spectra and emulated ImQMD predictions

are shown in appendix E.

The results can be converted to a probability distribution on effective mass splitting Δ𝑚∗
𝑛𝑝/𝛿
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Figure 6.6: Posterior distribution when ImQMD is compared to experimental data from Chapter 4.
All eight observables are used for Bayesian analysis. The values for median and 68% confidence
interval of the marginalized distribution are tabulated on the upper right hand side of the figure.

with the following relation [158],

𝑓𝐼 =
𝑚𝑁

𝑚∗
𝑠
− 𝑚𝑁

𝑚∗
𝑣

Δ𝑚∗
𝑛𝑝

𝛿
≈ −2 𝑓𝐼

(
𝑚∗

𝑠

𝑚𝑁

)2
.

(6.15)

Using this equation, we find that Δ𝑚∗
𝑛𝑝/𝛿 = −0.11± 0.04. Analysis of n/p ratio using ImQMD

at 120 MeV/u shows that 𝛿𝑚∗
𝑛𝑝/𝛿 = −0.05 ± 0.09 [158] while analysis nuclear elastic scattering

data shows that 𝛿𝑚∗
𝑛𝑝/𝛿 = −0.25 ± 0.27 [197]. Previous analysis are inconclusive about the sign

of effective mass splitting, but this analysis shows that 𝛿𝑚∗
𝑛𝑝/𝛿 is most likely negative.

Although closure test shows that our analysis is not able to constrain 𝐿 reliably, this can still

be achieved indirectly by invoking previous constraint from pion ratio spectra. The pion constraint
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Figure 6.7: Same as Fig. 4.4, with 𝛿𝑚∗
𝑛𝑝/𝛿 = −0.11 ± 0.04 overlaid as green hatch.

shows a correlation between Δ𝑚∗
𝑛𝑝/𝛿 and 𝐿, therefore a tighter constraint on 𝐿 can be achieved

with Δ𝑚∗
𝑛𝑝/𝛿 narrowed down, as Fig. 6.7 illustrates. The combined analysis of flows, stopping and

pion ratios gives 𝐿 = 68 ± 23 MeV, which is 39% tighter than the previous pion ratios constraint.

Since pion observables are sensitive to 𝜌 = 1.5𝜌0 [143], our constraint should be placed there

instead of at 𝜌0. Calculation with EoS in dcQMD shows that 𝑆(1.5𝜌0) = 46 ± 8 MeV and

𝐿(1.5𝜌0) = 61 ± 51 MeV.

To test the predictive power of our results, ImQMD is executed with the best fitted parameters

(𝑆0 = 35 MeV, 𝐿 = 68 MeV, 𝑚∗
𝑠/𝑚𝑁 = 0.83, 𝑚∗

𝑣/𝑚𝑁 = 0.89 and 𝜂 = −0.07) to predict VarXZ

for 197Au + 197Au and 129Xe + 133Cs reactions at 250 MeV/u and 𝑏 = 1 fm. 𝐿 = 68 MeV comes

from the analysis with pion constraints and other parameter values are set to the peak values of

marginalized distributions in Fig. 6.6. Experimental results on these systems have been published

by FOPI group [32]. Their results covers a wide range of beam energies, but results of 250 MeV/u
is chosen as it is close to the beam energy of 270 MeV/u in S𝜋RIT experiment. As illustrated

in Fig. 6.8, the agreement between model predictions (orange points) and experimental data (blue

points) are reasonable. Our constraints are applicable to reactions near 270 MeV/u.

𝐾0 (another name for 𝐾sat in Eq. (1.4)) is known experimentally to be around 230 MeV.
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Figure 6.8: VarXZ of proton, Deuteron and Triton for 197Au + 197Au and 129Xe + 133Cs reactions
at 250 MeV/u at 𝑏 = 1 fm. The orange points show ImQMD predictions using the best fitted
parameter values obtained from the S𝜋RIT experiment. The blue points show experimental results
from the FOPI data set.

Additional Bayesian analysis is done with 𝐾0 included as a free parameter, ranging from 200 to

300 MeV. The prior for 𝐾0 is a Gaussian distribution with mean = 237 MeV and standard deviation =

27 MeV. The values are taken from the second and third row of Table 2.1, which shows the statistics

of 𝐾sat for commonly used Skyrme type EoSs. The posterior in Fig. 6.9 shows that our observables

are not sensitive to 𝐾0 as the marginalized posterior distribution of 𝐾0 is almost identical to its

prior. Furthermore, posterior distributions of 𝑚∗
𝑠/𝑚𝑁 and 𝑚∗

𝑣/𝑚𝑁 show no correlation with 𝐾0

and peak at around the same values as before when 𝐾0 is not allowed to vary. Although 𝜂 correlates

with 𝐾0, it does not affect our constraint on effective masses.

6.7 Implications on NS properties

With the connection between EoS parameters and NS properties established in Chapter 2, the

impact of S𝜋RIT results on NS properties will be discussed in this section.

Meta-modeling EoS from Section 2.3 is chosen for this analysis. These EoSs are randomly

generated with 𝑆, 𝐿, 𝐾 , 𝑄 and 𝑍 values distributed uniformly within plus or minus four standard

deviation from the weighted averages of all models in row seven and eight of Table 2.1. The ranges

of parameter are extended from two standard deviation in Section 2.3 to four such that a larger
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Figure 6.9: Same as Fig. 6.6, but 𝐾0 is allowed to vary from 200 to 300 MeV.

functional space can be explored. EoSs with parameters inside the two standard deviation ranges

are found to mostly outside the existing experimental constraint on symmetric matter so a wider

parameter search is needed. Furthermore, we use uniform priors on 𝑆, 𝐿, 𝐾 , 𝑄, 𝑍 within the four

standard deviation ranges as opposed to Gaussian priors previously used in Section 2.3 as we want

to test the constraining power of just the heavy-ion results. The astronomical constraint on Λ from

LIGO group is not applied here for the same reason.

We follow Eq. (2.7) to calculate posterior distributions. The EoSs that violate either maximum

mass > 2.04𝑀� or causality are discarded. The remaining EoSs are weighted with the product of

five Gaussian distributions with means and standard deviations given by the following constraints

from heavy-ion collision: 𝑆(1.5𝜌0) = 46 ± 8 MeV and 𝐿 (1.5𝜌0) = 69 ± 51 MeV from analysis of

S𝜋RIT data, 𝑆(0.67𝜌0) = 25 ± 1 MeV from nuclear masses [34, 40], 𝐿 (0.67𝜌0) = 71 ± 23 MeV
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from neutron skin thickness measurement of 208Pb from PREX-II [198] and 𝑃SM(4𝜌0) = 127 ±
72 MeV/fm3 from the analysis of transverse flows of Au + Au at 2 AGeV [11]. Here, 𝑃SM is the

pressure of symmetric matter.

The pairwise correlations and marginal distributions of these parameters, as well as radius 𝑅 and

Λ of a 1.4𝑀� NS, are shown in Fig. 6.10. The diagonal distributions show the marginal probability

distributions from only maximum mass, stability and causality conditions (red histograms), and

with heavy-ion constraints included in addition to the three conditions (blue histogram). The

off-diagonal pairwise correlations all show posterior with heavy-ion constraints. The table in the

upper right hand corner of the figure shows parameter values and uncertainty, calculated by fitting

the marginal distribution with asymmetric Gaussian. The numbers on the row labelled "Before"

corresponds to the fitted values for blue histograms and "After" for red histograms. Our calculation

indicates that 𝑅 = 12.7+0.6
−0.8 km and Λ = 365+187

−118 for a 1.4𝑀� NS. For reference, analysis of

GW170817 by LIGO group yields Λ = 190+390
−120 [29] and multimessenger constraints from the

survey of NICER, gravitational wave and X-ray Pulser PSR J0030 + 0740 and J0740 + 6620 yields

𝑅 = 12.56+1.00
−1.07 km [199]. The predicted ranges of Λ and 𝑅 with heavy-ion constraints overlap

significantly with that from gravitational wave and astronomical observations.

The 95% confidence interval (C.I.) of NS pressure (PNS) as a function of density is plotted in

Fig. 6.11a. Solid blue region and open dashed blue region are C.I.s with and without using heavy-

ion constraints, respectively. This is consistent with multimessenger constraints from the survey

of NICER, gravitational wave and X-ray Pulser PSR J0030 + 0740 and J0740 + 6620 [199] whose

90% C.I. prediction on pressure is represented as a solid red region on the figure. Furthermore,

symmetric matter pressure (Psym) of EoSs in the posterior also shows a good agreement with

previous constraint from the analysis of transverse flow for Au + Au [11] in Fig. 6.11b. This is to

be expected since the flow constraint at 4𝜌0 is used as a likelihood condition in the calculation of

posterior.

Fig. 6.12 shows the 95% C.I.s of symmetry energy term with (solid blue region) and without

(dashed blue open region) heavy-ion constraints. The compiled low density data with the fitted
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Figure 6.10: Posterior distributions for 𝑆(0.67𝜌0), 𝐿 (0.67𝜌0), 𝑆(1.5𝜌0), 𝐿(1.5𝜌0), 𝑃SM(4𝜌0), 𝑅
and Λ of 1.4𝑀� NS. See text for details.

(a) (b)

Figure 6.11: (a): Dependence of NS pressure on matter density. (b): Dependence of symmetric
matter pressure on matter density. See text for details.
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Figure 6.12: Dependence of symmetric energy on matter density with experimental constraints
extracted from Ref. [8]. The blue dashed lines correspond to 95% C.I. without HIC constraints and
the blue shaded region corresponds to 95% C.I. after applying HIC constraints. The open red area
corresponds to best fit result from Ref. [8], fitted with all the data points except HIC(𝜋). See text
for details.

constraints from Ref. [8] are also plotted on top for comparison. These analyses are: Neutron to

proton ratio (n/p) [158], isospin diffusion (isodiff) [200–202], nuclear masses (Mass(Skyrme) [40]

and Mass(DFT) [203]), isobaric analog states (IAS) [39], electric dipole polarizability (𝛼𝐷) [204]

and neutron skin thickness of 208Pb (PREX-II) [198]. The open red triangle labelled "HIC(𝜋)"

corresponds to the refined constraint on 𝑆(1.5𝜌0) from S𝜋RIT experiment. The sensitive density

for each experiment is extracted in Ref. [8]. The reference also fits all of the symmetry energy con-

straints, excluding HIC(𝜋), with the sum of kinetic energy term formulated as 12.7 MeV(𝜌/𝜌0)2/3

and second order polynomial expended at 𝜌 = 0.67𝜌0. 1𝜎 fitted result from the reference is

labelled as "Quadratic best fit" in the figure. The slight disagreement between the quadratic fit and

Meta-modeling at high density could hint at the need for cubic term to make quadratic fit more stiff.
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CHAPTER 7

SUMMARY

The properties of neutron stars depend strongly on high density part of symmetry energy term in nu-

clear equation of state (EoS). Equation of state is used as an input for Tolman–Oppenheimer–Volkoff

(TOV) equation to predict neutron star properties such as radius or tidal deformability (Λ). This

work demonstrates a strong correlation between Λ and the slope parameter (𝐿) in the symmetry

energy term of nuclear EoS with Skyrme type and Meta-modeling EoS.

The S𝜋RIT TPC was constructed to the probe symmetry energy term with the main goal of

measuring pion emissions from heavy-ion collisions of rare neutron-rich isotopes. Neutron star

properties are sensitive to high density part of EoS and pions are predicted by transport models

to originate from high density region due to its unique production mechanism. Four different

reactions: 108Sn + 112Sn, 112Sn + 124Sn, 124Sn + 112Sn and 132Sn + 124Sn at 270 MeV/u are

preformed during the experimental campaign. While 124Sn and 112Sn nuclei are stable and have

been used as beams in previous studies [157, 158, 201], 108Sn and 132Sn beams are radioactive

and can only be obtained in sufficient beam quantity in the rare isotope beam facility.

To extract useful data from S𝜋RIT TPC, multiple analysis steps are needed to classify nuclear

fragments, remove detector aberrations, and correct for detector resolution and efficiency effects.

Upstream beam detectors have to be calibrated and analyzed to isolate events with the desired

isotopes from beam impurities. After corrections on detector aberrations such as space charge and

pad saturation are done, the hit clusters are fitted by GENFIT package to reconstruct the 𝑝/𝑍 value

for each fragment. The final step in the analysis is to correct for detector efficiency and reaction

plane resolution with embedding and sub-event methods, respectively. All these steps are explained

in details in different student theses [2, 7], including this work.

To verify our understanding of detector response, Monte Carlo simulation of S𝜋RIT TPC is

developed to recreate aspects of experimental data. It shows that the sudden loss of tracking

efficiency for particles emitting at 𝜙 = ±90◦ can be reproduced by incorporating saturation modes
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of heavy residue. Discrepancies in momentum distributions between particles with positive 𝑝𝑥

and negative 𝑝𝑥 can be recreated by incorporating space charge effect and the shape of multiplicity

distribution can be quantitatively described with the simulation of KYOTO and KATANA trigger

conditions.

By comparing experimental pion ratios with transport model dcQMD, a correlated constraints

on Δ𝑚∗
𝑛𝑝/𝛿 and 𝐿 is obtained. To reduce our uncertainty on 𝐿, a tighter constraint on Δ𝑚∗

𝑛𝑝/𝛿 is

needed. It is achieved in this work by utilizing the light fragment observables. The coalescence

invariant directed and elliptical flow for 108Sn + 112Sn and 132Sn + 124Sn reactions from peripheral

events, and VarXZs for 108Sn + 112Sn and 112Sn + 124Sn reactions from central events are

reconstructed from S𝜋RIT data, predictions from transport model ImQMD are then compared to

constrain Δ𝑚∗
𝑛𝑝/𝛿.

Input parameters related to the symmetry energy in ImQMD (𝑆0, 𝐿, 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and 𝜂) are

fitted simultaneously through Bayesian analysis using Gaussian process with Principal Component

Analysis are employed to emulate the behavior of ImQMD from calculated results with 70 parameter

sets. To test the performance of such algorithms, closure test is performed on simulated data. It

shows that our method is able to constraint 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and 𝜂. 𝑆0 and 𝐿 do not show much

sensitivity to the nucleonic experimental observables of VarXZ, 𝑣1 and 𝑣2.

The final global fit with experimental data shows a tight constraint on 𝑚∗
𝑠/𝑚𝑁 , 𝑚∗

𝑣/𝑚𝑁 and

𝜂. The predicting power of the constraints is verified by running ImQMD again with the best

fitted parameters to predict VarXZ on 197Au + 197Au and 129Xe + 133Cs reactions at 250 MeV/u.

The predictions agree reasonable well with published results from FOPI. Our preliminary values

of 𝑚∗
𝑠/𝑚𝑁 and 𝑚∗

𝑣/𝑚𝑁 correspond to Δ𝑚∗
𝑛𝑝/𝛿 = −0.11 ± 0.04. When imposed together with

constraint from pion ratio, the constraint on 𝐿 can be tightened to 𝐿 = 68±25 MeV, which is a 39%

improvement. Our preliminary constraints on the symmetry energy term is verified to be consistent

with low density constraints from previous studies of other heavy-ion collisions. Furthermore,

when these heavy-ion constraints are used to predict neutron star properties with Meta-modeling

type EoS, the calculated tidal deformability and radius of a 1.4𝑀� neutron stars are in good
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agreement with astronomical observations from LIGO [22] and multimessenger analysis of pulsars

and gravitational wave data [199].

Overall the S𝜋RIT experiment have successfully constrained nuclear EoS at high density. A

major source of uncertainty comes from the limited statistics of pions. We hope to increase the

statistics by relaxing the cut conditions. Furthermore, collaborative efforts from theorists are under-

way to better understand the effect of pion potential and ensure consistent model predictions [117].

A better understanding of nuclear EoS is within reach as theories converge and data from different

experiments are being finalized.
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APPENDIX A

SKYRME TYPE EOS

The energy density E of infinite nuclear matter as a function of particle number density 𝜌 for

Skyrme interaction is given by [3],

E
𝜌
=

3ℏ2

10𝑀

(
3𝜋2

2

)2/3
𝜌2/3𝐻5/3 +

𝑡0
8
𝜌[2(𝑥0 + 2) − (2𝑥0 + 1)𝐻2]

+ 1
48

3∑
𝑖=1

𝑡3𝑖 𝜌
𝜎𝑖+1 [2(𝑥3𝑖 + 2) − (2𝑥3𝑖 + 1)𝐻2] +

3
40

(
3𝜋2

40

)2/3
𝜌5/3(𝑎𝐻5/3 + 𝑏𝐻8/3),

(A.1)

with

𝑎 = 𝑡1(𝑥1 + 2) + 𝑡2(𝑥2 + 2),

𝑏 = 0.5[𝑡2(2𝑥2 + 1) − 𝑡1(2𝑥1 + 1)], and

𝐻𝑛 (𝑦) = 2𝑛−1 [𝑦𝑛 + (1 − 𝑦)𝑛],

(A.2)

where 𝑦 = 𝑍/𝐴 is the proton fraction. The parameter 𝑡0, 𝑡1, 𝑡2, 𝑡31, 𝑡32, 𝑡33, 𝑥0, 𝑥1, 𝑥2, 𝑥31,

𝑥32, 𝑥33, 𝜎1, 𝜎2 and 𝜎3 are the free parameters. Ref. [205] introduced even more terms to Skyrme

EoS to avoid the high-density ferromagnetic instability of neutron stars, but in this thesis those

additional terms are never used.
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APPENDIX B

TOLMAN–OPPENHEIMER–VOLKOFF EQUATION

The Tolman–Oppenheimer–Volkoff (TOV) equation set predicts the structure of a static spherical

object under general relativity for any given EoS. The equations are:

𝑑𝑃(𝑟)
𝑑𝑟

= − (E(𝑟) + 𝑃(𝑟)) (𝑀 (𝑟) + 4𝜋𝑟3𝑃(𝑟))
𝑟2(1 − 2𝑀 (𝑟)/𝑟) ,

𝑑𝑀 (𝑟)
𝑑𝑟

= 4𝜋𝑟2E(𝑟).
(B.1)

Here geometrized units 𝐺 = 𝑐 = 1 are used, E(𝑟) is the energy density given by EoS, 𝑃(𝑟) is the

internal pressure at given depth and 𝑀 (𝑟) is the integral of gravitational mass from the core up to

radius 𝑟. The surface is defined as the radial distance 𝑅 at which 𝑃(𝑅) = 0.

A list of equations whose solutions will lead to the value ofΛ from the above structural functions

will be shown without derivation. Please refer to Refs. [27, 206] for details. To begin with, an

auxiliary variable 𝑦𝑅 = 𝑦(𝑅) is calculated,

𝑟
𝑑𝑦(𝑟)
𝑑𝑟

+ 𝑦(𝑟)2 + 𝑦(𝑟)𝐹 (𝑟) + 𝑟2𝑄(𝑟) = 0. (B.2)

where

𝐹 (𝑟) = 𝑟 − 4𝜋𝑟3(E(𝑟) − 𝑃(𝑟))
𝑟 − 2𝑀 (𝑟) . (B.3)

𝑄(𝑟) =
4𝜋𝑟 (5E(𝑟) + 9𝑃(𝑟) + E+𝑃(𝑟)

𝜕𝑃(𝑟)/𝜕E − 6
4𝜋𝑟2

𝑟 − 2𝑀 (𝑟)

− 4
[ (𝑀 (𝑟) + 4𝜋𝑟3𝑃(𝑟)
𝑟2(1 − 2𝑀 (𝑟)/𝑟)

]2
.

(B.4)
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The tidal Love number 𝑘2 can then be calculated with the following expression:

𝑘2 =
1
20

(𝑅𝑠

𝑅

)5 (
1 − 𝑅𝑠

𝑅

)2 [
2 − 𝑦𝑅 + (𝑦𝑅 − 1) 𝑅𝑠

𝑅

]
×

{𝑅𝑠

𝑅

(
6 − 3𝑦𝑅 + 3𝑅𝑠

2𝑅
(5𝑦𝑅 − 8) + 1

4

(𝑅𝑠

𝑅

)2

×
[
26 − 22𝑦𝑅 + 𝑅𝑠 (3𝑦𝑅 − 2)

𝑅
+

(𝑅𝑆

𝑅

)2(1 + 𝑦𝑅)
] )

+ 3
(
1 − 𝑅𝑠

𝑅

)2 [
2 − 𝑦𝑅 + 𝑅𝑠 (𝑦𝑅 − 1)

𝑅

]
× ln

(
1 − 𝑅𝑆

𝑅

)}−1
.

(B.5)

In the above equation, 𝑅𝑆 = 2𝑀 is the Schwarzschild radius. The value of Λ is then extracted with

Eq. (1.9).

148



APPENDIX C

META-MODELING PARAMETERS AND TAYLOR PARAMETERS MAPPING

ELFc energy functional is written as a sum of kinetic energy term and potential energy term:

𝐸𝐸𝐿𝐹𝑐 (𝜌, 𝛿) = 𝑡𝐹𝐺∗(𝜌, 𝛿) + 𝑣𝑁𝐸𝐿𝐹𝑐 (𝜌, 𝛿), (C.1)

where 𝜌 is the density and 𝛿 is the asymmetry parameter. The kinetic energy term 𝑡𝐹𝐺∗(𝜌, 𝛿) in

the above is written as:

𝑡𝐹𝐺∗(𝜌, 𝛿) = 𝑡𝐹𝐺
sat
2

( 𝜌

𝜌0

) 2
3
[(

1 + 𝜅sat𝜌
𝜌0

) (
(1 + 𝛿)

5
3+

(1 − 𝛿)
5
3
)
+ 𝜅sym𝜌

𝜌0
𝛿((1 + 𝛿)

5
3 − (1 − 𝛿)

5
3 )

]
.

(C.2)

In the above, the parameters 𝑡𝐹𝐺
sat = 22.1 MeV while 𝜅𝑠𝑦𝑚 and 𝜅𝑠𝑎𝑡 are effective mass parameters

described in Eq. (2.3).

The potential energy term 𝑣𝑁𝐸𝐿𝐹𝑐 (𝜌, 𝛿) is written as:

𝑣𝑁𝐸𝐿𝐹𝑐 (𝜌, 𝛿) =
4∑

𝑖=0

1
𝑖!
(𝑣𝑖𝑠𝑖 + 𝑣𝑖𝑣𝑖 𝛿2) (1 − (−3)5−𝑖)

× exp
(
− 6.93𝜌

𝜌0

)
𝑥𝑖 .

(C.3)

In the above equation, the parameters 𝑣𝑖𝑠𝑖 and 𝑣𝑖𝑣𝑖 are free parameters. These 10 parameters can be

uniquely mapped onto Taylor parameters using the following formulas (For a detailed derivation,

please refer to Ref. [1]):

𝑣𝑖𝑠0 = 𝐸sat − 𝑡𝐹𝐺
sat (1 + 𝜅sat), (C.4)

𝑣𝑖𝑠1 = −𝑡𝐹𝐺
sat (2 + 5𝜅sat), (C.5)

𝑣𝑖𝑠2 = 𝐾sat − 2𝑡𝐹𝐺
sat (−1 + 5𝜅sat), (C.6)
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𝑣𝑖𝑠3 = 𝑄sat − 2𝑡𝐹𝐺
sat (4 − 5𝜅sat), (C.7)

𝑣𝑖𝑠4 = 𝑍sat − 8𝑡𝐹𝐺
sat (−7 + 5𝜅sat), (C.8)

𝑣𝑖𝑣0 = 𝑆0 −
5
9
𝑡𝐹𝐺
sat (1 + (𝜅sat + 3𝜅sym)), (C.9)

𝑣𝑖𝑣1 = 𝐿 − 5
9
𝑡𝐹𝐺
sat (2 + 5(𝜅sat + 3𝜅sym)), (C.10)

𝑣𝑖𝑣2 = 𝐾sym − 10
9
𝑡𝐹𝐺
sat (−1 + 5(𝜅sat + 3𝜅sym)), (C.11)

𝑣𝑖𝑣3 = 𝑄sym − 10
9
𝑡𝐹𝐺
sat (4 − 5(𝜅sat + 3𝜅sym)), (C.12)

𝑣𝑖𝑣4 = 𝑍sym − 40
9
𝑡𝐹𝐺
sat (−7 + 5(𝜅sat + 3𝜅sym)). (C.13)

When exploring the parameter space, Taylor parameters will be translated to Meta-modeling EoS

using the above formulas and NS features will then be calculated with TOV equation. Neutron star

properties will be examined to search for Taylor parameter spaces flavored by the observed tidal

deformability.
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APPENDIX D

FULL CORRELATION BETWEEN TIDAL DEFORMABILITY AND PARAMETERS

The correlations between 𝐿, 𝐾sym, 𝐾sat, 𝑄sym, 𝑄sat,𝑍sym, 𝑍sat,
(
𝑚sat/𝑚

)
, 𝑃(2𝜌0) and Λ are

shown in Fig. D.1. This is an extension of Fig. 2.9 where bivariate distributions of some selected

parameters are shown. The organization is similar: Lower triangles show bivariate distributions

between variables and marginal distribution of each variable is shown on the diagonal. The upper

triangles shows Pearson correlation coefficients between each variable pairs if it is larger than 0.1

otherwise they are omitted for simplicity and 3 dots are put in its place.
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Figure D.1: Bivariate characteristics of posterior likelihood distributions. This is an extension to
Fig. 2.6 and correlation pairs of all parameters pair are shown. Three regions can be distinguished.
The lower triangle panels show likelihood distributions, with intensity proportional to distribution
value, for pairs of Taylor parameters. The diagonal panels display marginalized distribution for
each parameter. The upper triangular region shows Pearson correlation coefficient for parameter
pairs, but when correlation in magnitude is less than 0.1, it is omitted and 3 dots are put in place of
its value.
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APPENDIX E

BEST FIT FROM IMQMD

The fitted results from Bayesian analysis are shown in Figs. E.1 and E.2.

Fig. E.1 shows results on direct and elliptical flow. Plots on the left column show results in
108Sn + 112Sn reaction and on the right show that of 132Sn + 124Sn reaction. From top to bottom,

the three rows show 𝑣1 as a function of 𝑦0, 𝑣1 as a function of 𝑝𝑇 (MeV/c) and 𝑣2 as a function of

𝑦0.

Fig. E.2 is similar to Fig. E.1 but with results of VarXZ being shown. Beware that the reaction

on the right column is now 112Sn + 124Sn instead of 132Sn + 124Sn. Using symmetry arguments

in Chapter 4, rapidity distributions are reflected along 𝑦0 = 0 only in 108Sn + 112Sn reaction when

VarXZ is calculated.

ImQMD calculations are done at 𝑏 = 5 fm for flow results and at 𝑏 = 1 fm for stopping results,

and on both Figs. E.1 and E.2 the mean impact parameter on the label of 𝑦-axis reflects the centrality

gate on experimental data.
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Figure E.1: Comparison of direct and elliptical flow between the best fitted ImQMD predictions
and experimental results. The blue region shows the maximum range of prediction values from
ImQMD with the parameter range in Table 6.1 and the purple region shows the 2𝜎 confidence
region of ImQMD’s prediction after Bayesian analysis. The orange points show results from S𝜋RIT
experiment, which is identical to what is shown in Chapter 4. See text for details.
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Figure E.2: Same as Fig. E.1, but with VarXZ of 108Sn + 112Sn on the left and that of 112Sn +
124Sn on the right.
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